OpenOCD
target.c
Go to the documentation of this file.
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 
3 /***************************************************************************
4  * Copyright (C) 2005 by Dominic Rath *
5  * Dominic.Rath@gmx.de *
6  * *
7  * Copyright (C) 2007-2010 Øyvind Harboe *
8  * oyvind.harboe@zylin.com *
9  * *
10  * Copyright (C) 2008, Duane Ellis *
11  * openocd@duaneeellis.com *
12  * *
13  * Copyright (C) 2008 by Spencer Oliver *
14  * spen@spen-soft.co.uk *
15  * *
16  * Copyright (C) 2008 by Rick Altherr *
17  * kc8apf@kc8apf.net> *
18  * *
19  * Copyright (C) 2011 by Broadcom Corporation *
20  * Evan Hunter - ehunter@broadcom.com *
21  * *
22  * Copyright (C) ST-Ericsson SA 2011 *
23  * michel.jaouen@stericsson.com : smp minimum support *
24  * *
25  * Copyright (C) 2011 Andreas Fritiofson *
26  * andreas.fritiofson@gmail.com *
27  ***************************************************************************/
28 
29 #ifdef HAVE_CONFIG_H
30 #include "config.h"
31 #endif
32 
33 #include <helper/align.h>
34 #include <helper/list.h>
35 #include <helper/nvp.h>
36 #include <helper/time_support.h>
37 #include <jtag/jtag.h>
38 #include <flash/nor/core.h>
39 
40 #include "target.h"
41 #include "target_type.h"
42 #include "target_request.h"
43 #include "breakpoints.h"
44 #include "register.h"
45 #include "trace.h"
46 #include "image.h"
47 #include "rtos/rtos.h"
48 #include "transport/transport.h"
49 #include "arm_cti.h"
50 #include "smp.h"
51 #include "semihosting_common.h"
52 
53 /* default halt wait timeout (ms) */
54 #define DEFAULT_HALT_TIMEOUT 5000
55 
57  enum target_event event;
58  Jim_Interp *interp;
59  Jim_Obj *body;
60  struct list_head list;
61 };
62 
64  uint32_t count, uint8_t *buffer);
66  uint32_t count, const uint8_t *buffer);
67 static int target_register_user_commands(struct command_context *cmd_ctx);
69  struct gdb_fileio_info *fileio_info);
70 static int target_gdb_fileio_end_default(struct target *target, int retcode,
71  int fileio_errno, bool ctrl_c);
72 
73 static struct target_type *target_types[] = {
81  &fa526_target,
89  &arm11_target,
92  &avr_target,
97  &hla_target,
98  &esp32_target,
101  &or1k_target,
104  &stm8_target,
105  &riscv_target,
106  &mem_ap_target,
108  &arcv2_target,
110  &armv8r_target,
112  NULL,
113 };
114 
119 static OOCD_LIST_HEAD(target_reset_callback_list);
120 static OOCD_LIST_HEAD(target_trace_callback_list);
122 static OOCD_LIST_HEAD(empty_smp_targets);
123 
127 };
128 
129 static const struct nvp nvp_assert[] = {
130  { .name = "assert", NVP_ASSERT },
131  { .name = "deassert", NVP_DEASSERT },
132  { .name = "T", NVP_ASSERT },
133  { .name = "F", NVP_DEASSERT },
134  { .name = "t", NVP_ASSERT },
135  { .name = "f", NVP_DEASSERT },
136  { .name = NULL, .value = -1 }
137 };
138 
139 static const struct nvp nvp_error_target[] = {
140  { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
141  { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
142  { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
143  { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
144  { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
145  { .value = ERROR_TARGET_UNALIGNED_ACCESS, .name = "err-unaligned-access" },
146  { .value = ERROR_TARGET_DATA_ABORT, .name = "err-data-abort" },
147  { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE, .name = "err-resource-not-available" },
148  { .value = ERROR_TARGET_TRANSLATION_FAULT, .name = "err-translation-fault" },
149  { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
150  { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
151  { .value = -1, .name = NULL }
152 };
153 
154 static const char *target_strerror_safe(int err)
155 {
156  const struct nvp *n;
157 
159  if (!n->name)
160  return "unknown";
161  else
162  return n->name;
163 }
164 
165 static const struct nvp nvp_target_event[] = {
166 
167  { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
168  { .value = TARGET_EVENT_HALTED, .name = "halted" },
169  { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
170  { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
171  { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
172  { .value = TARGET_EVENT_STEP_START, .name = "step-start" },
173  { .value = TARGET_EVENT_STEP_END, .name = "step-end" },
174 
175  { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
176  { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
177 
178  { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
179  { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
180  { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
181  { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
182  { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
183  { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
184  { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
185  { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
186 
187  { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
188  { .value = TARGET_EVENT_EXAMINE_FAIL, .name = "examine-fail" },
189  { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
190 
191  { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
192  { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
193 
194  { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
195  { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
196 
197  { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
198  { .value = TARGET_EVENT_GDB_FLASH_WRITE_END, .name = "gdb-flash-write-end" },
199 
200  { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
201  { .value = TARGET_EVENT_GDB_FLASH_ERASE_END, .name = "gdb-flash-erase-end" },
202 
203  { .value = TARGET_EVENT_TRACE_CONFIG, .name = "trace-config" },
204 
205  { .value = TARGET_EVENT_SEMIHOSTING_USER_CMD_0X100, .name = "semihosting-user-cmd-0x100" },
206  { .value = TARGET_EVENT_SEMIHOSTING_USER_CMD_0X101, .name = "semihosting-user-cmd-0x101" },
207  { .value = TARGET_EVENT_SEMIHOSTING_USER_CMD_0X102, .name = "semihosting-user-cmd-0x102" },
208  { .value = TARGET_EVENT_SEMIHOSTING_USER_CMD_0X103, .name = "semihosting-user-cmd-0x103" },
209  { .value = TARGET_EVENT_SEMIHOSTING_USER_CMD_0X104, .name = "semihosting-user-cmd-0x104" },
210  { .value = TARGET_EVENT_SEMIHOSTING_USER_CMD_0X105, .name = "semihosting-user-cmd-0x105" },
211  { .value = TARGET_EVENT_SEMIHOSTING_USER_CMD_0X106, .name = "semihosting-user-cmd-0x106" },
212  { .value = TARGET_EVENT_SEMIHOSTING_USER_CMD_0X107, .name = "semihosting-user-cmd-0x107" },
213 
214  { .name = NULL, .value = -1 }
215 };
216 
217 static const struct nvp nvp_target_state[] = {
218  { .name = "unknown", .value = TARGET_UNKNOWN },
219  { .name = "running", .value = TARGET_RUNNING },
220  { .name = "halted", .value = TARGET_HALTED },
221  { .name = "reset", .value = TARGET_RESET },
222  { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
223  { .name = "unavailable", .value = TARGET_UNAVAILABLE },
224  { .name = NULL, .value = -1 },
225 };
226 
227 static const struct nvp nvp_target_debug_reason[] = {
228  { .name = "debug-request", .value = DBG_REASON_DBGRQ },
229  { .name = "breakpoint", .value = DBG_REASON_BREAKPOINT },
230  { .name = "watchpoint", .value = DBG_REASON_WATCHPOINT },
231  { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
232  { .name = "single-step", .value = DBG_REASON_SINGLESTEP },
233  { .name = "target-not-halted", .value = DBG_REASON_NOTHALTED },
234  { .name = "program-exit", .value = DBG_REASON_EXIT },
235  { .name = "exception-catch", .value = DBG_REASON_EXC_CATCH },
236  { .name = "undefined", .value = DBG_REASON_UNDEFINED },
237  { .name = NULL, .value = -1 },
238 };
239 
240 static const struct nvp nvp_target_endian[] = {
241  { .name = "big", .value = TARGET_BIG_ENDIAN },
242  { .name = "little", .value = TARGET_LITTLE_ENDIAN },
243  { .name = "be", .value = TARGET_BIG_ENDIAN },
244  { .name = "le", .value = TARGET_LITTLE_ENDIAN },
245  { .name = NULL, .value = -1 },
246 };
247 
248 static const struct nvp nvp_reset_modes[] = {
249  { .name = "unknown", .value = RESET_UNKNOWN },
250  { .name = "run", .value = RESET_RUN },
251  { .name = "halt", .value = RESET_HALT },
252  { .name = "init", .value = RESET_INIT },
253  { .name = NULL, .value = -1 },
254 };
255 
256 const char *debug_reason_name(const struct target *t)
257 {
258  const char *cp;
259 
261  t->debug_reason)->name;
262  if (!cp) {
263  LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
264  cp = "(*BUG*unknown*BUG*)";
265  }
266  return cp;
267 }
268 
269 const char *target_state_name(const struct target *t)
270 {
271  const char *cp;
273  if (!cp) {
274  LOG_ERROR("Invalid target state: %d", (int)(t->state));
275  cp = "(*BUG*unknown*BUG*)";
276  }
277 
278  if (!target_was_examined(t) && t->defer_examine)
279  cp = "examine deferred";
280 
281  return cp;
282 }
283 
284 const char *target_event_name(enum target_event event)
285 {
286  const char *cp;
287  cp = nvp_value2name(nvp_target_event, event)->name;
288  if (!cp) {
289  LOG_ERROR("Invalid target event: %d", (int)(event));
290  cp = "(*BUG*unknown*BUG*)";
291  }
292  return cp;
293 }
294 
295 const char *target_reset_mode_name(enum target_reset_mode reset_mode)
296 {
297  const char *cp;
298  cp = nvp_value2name(nvp_reset_modes, reset_mode)->name;
299  if (!cp) {
300  LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode));
301  cp = "(*BUG*unknown*BUG*)";
302  }
303  return cp;
304 }
305 
307 {
308  struct target **t = &all_targets;
309 
310  while (*t)
311  t = &((*t)->next);
312  *t = target;
313 }
314 
315 /* read a uint64_t from a buffer in target memory endianness */
316 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
317 {
319  return le_to_h_u64(buffer);
320  else
321  return be_to_h_u64(buffer);
322 }
323 
324 /* read a uint32_t from a buffer in target memory endianness */
325 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
326 {
328  return le_to_h_u32(buffer);
329  else
330  return be_to_h_u32(buffer);
331 }
332 
333 /* read a uint24_t from a buffer in target memory endianness */
334 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
335 {
337  return le_to_h_u24(buffer);
338  else
339  return be_to_h_u24(buffer);
340 }
341 
342 /* read a uint16_t from a buffer in target memory endianness */
343 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
344 {
346  return le_to_h_u16(buffer);
347  else
348  return be_to_h_u16(buffer);
349 }
350 
351 /* write a uint64_t to a buffer in target memory endianness */
352 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
353 {
355  h_u64_to_le(buffer, value);
356  else
357  h_u64_to_be(buffer, value);
358 }
359 
360 /* write a uint32_t to a buffer in target memory endianness */
361 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
362 {
364  h_u32_to_le(buffer, value);
365  else
366  h_u32_to_be(buffer, value);
367 }
368 
369 /* write a uint24_t to a buffer in target memory endianness */
370 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
371 {
373  h_u24_to_le(buffer, value);
374  else
375  h_u24_to_be(buffer, value);
376 }
377 
378 /* write a uint16_t to a buffer in target memory endianness */
379 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
380 {
382  h_u16_to_le(buffer, value);
383  else
384  h_u16_to_be(buffer, value);
385 }
386 
387 /* write a uint8_t to a buffer in target memory endianness */
388 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
389 {
390  *buffer = value;
391 }
392 
393 /* write a uint64_t array to a buffer in target memory endianness */
394 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
395 {
396  uint32_t i;
397  for (i = 0; i < count; i++)
398  dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
399 }
400 
401 /* write a uint32_t array to a buffer in target memory endianness */
402 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
403 {
404  uint32_t i;
405  for (i = 0; i < count; i++)
406  dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
407 }
408 
409 /* write a uint16_t array to a buffer in target memory endianness */
410 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
411 {
412  uint32_t i;
413  for (i = 0; i < count; i++)
414  dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
415 }
416 
417 /* write a uint64_t array to a buffer in target memory endianness */
418 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
419 {
420  uint32_t i;
421  for (i = 0; i < count; i++)
422  target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
423 }
424 
425 /* write a uint32_t array to a buffer in target memory endianness */
426 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
427 {
428  uint32_t i;
429  for (i = 0; i < count; i++)
430  target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
431 }
432 
433 /* write a uint16_t array to a buffer in target memory endianness */
434 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
435 {
436  uint32_t i;
437  for (i = 0; i < count; i++)
438  target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
439 }
440 
441 /* return a pointer to a configured target; id is name or index in all_targets */
442 struct target *get_target(const char *id)
443 {
444  struct target *target;
445 
446  /* try as tcltarget name */
447  for (target = all_targets; target; target = target->next) {
448  if (!target_name(target))
449  continue;
450  if (strcmp(id, target_name(target)) == 0)
451  return target;
452  }
453 
454  /* try as index */
455  unsigned int index, counter;
456  if (parse_uint(id, &index) != ERROR_OK)
457  return NULL;
458 
459  for (target = all_targets, counter = index;
460  target && counter;
461  target = target->next, --counter)
462  ;
463 
464  return target;
465 }
466 
467 struct target *get_current_target(struct command_context *cmd_ctx)
468 {
469  struct target *target = get_current_target_or_null(cmd_ctx);
470 
471  if (!target) {
472  LOG_ERROR("BUG: current_target out of bounds");
473  exit(-1);
474  }
475 
476  return target;
477 }
478 
480 {
481  return cmd_ctx->current_target_override
482  ? cmd_ctx->current_target_override
483  : cmd_ctx->current_target;
484 }
485 
487 {
488  int retval;
489 
490  /* We can't poll until after examine */
491  if (!target_was_examined(target)) {
492  /* Fail silently lest we pollute the log */
493  return ERROR_FAIL;
494  }
495 
496  retval = target->type->poll(target);
497  if (retval != ERROR_OK)
498  return retval;
499 
500  if (target->halt_issued) {
501  if (target->state == TARGET_HALTED)
502  target->halt_issued = false;
503  else {
504  int64_t t = timeval_ms() - target->halt_issued_time;
505  if (t > DEFAULT_HALT_TIMEOUT) {
506  target->halt_issued = false;
507  LOG_INFO("Halt timed out, wake up GDB.");
509  }
510  }
511  }
512 
513  return ERROR_OK;
514 }
515 
517 {
518  int retval;
519  /* We can't poll until after examine */
520  if (!target_was_examined(target)) {
521  LOG_ERROR("Target not examined yet");
522  return ERROR_FAIL;
523  }
524 
525  retval = target->type->halt(target);
526  if (retval != ERROR_OK)
527  return retval;
528 
529  target->halt_issued = true;
531 
532  return ERROR_OK;
533 }
534 
565 int target_resume(struct target *target, bool current, target_addr_t address,
566  bool handle_breakpoints, bool debug_execution)
567 {
568  int retval;
569 
570  /* We can't poll until after examine */
571  if (!target_was_examined(target)) {
572  LOG_ERROR("Target not examined yet");
573  return ERROR_FAIL;
574  }
575 
577 
578  /* note that resume *must* be asynchronous. The CPU can halt before
579  * we poll. The CPU can even halt at the current PC as a result of
580  * a software breakpoint being inserted by (a bug?) the application.
581  */
582  /*
583  * resume() triggers the event 'resumed'. The execution of TCL commands
584  * in the event handler causes the polling of targets. If the target has
585  * already halted for a breakpoint, polling will run the 'halted' event
586  * handler before the pending 'resumed' handler.
587  * Disable polling during resume() to guarantee the execution of handlers
588  * in the correct order.
589  */
590  bool save_poll_mask = jtag_poll_mask();
591  retval = target->type->resume(target, current, address, handle_breakpoints,
592  debug_execution);
593  jtag_poll_unmask(save_poll_mask);
594 
595  if (retval != ERROR_OK)
596  return retval;
597 
599 
600  return retval;
601 }
602 
603 static int target_process_reset(struct command_invocation *cmd, enum target_reset_mode reset_mode)
604 {
605  char buf[100];
606  int retval;
607  const struct nvp *n;
608  n = nvp_value2name(nvp_reset_modes, reset_mode);
609  if (!n->name) {
610  LOG_ERROR("invalid reset mode");
611  return ERROR_FAIL;
612  }
613 
614  struct target *target;
616  target_call_reset_callbacks(target, reset_mode);
617 
618  /* disable polling during reset to make reset event scripts
619  * more predictable, i.e. dr/irscan & pathmove in events will
620  * not have JTAG operations injected into the middle of a sequence.
621  */
622  bool save_poll_mask = jtag_poll_mask();
623 
624  sprintf(buf, "ocd_process_reset %s", n->name);
625  retval = Jim_Eval(cmd->ctx->interp, buf);
626 
627  jtag_poll_unmask(save_poll_mask);
628 
629  if (retval != JIM_OK) {
630  Jim_MakeErrorMessage(cmd->ctx->interp);
631  command_print(cmd, "%s", Jim_GetString(Jim_GetResult(cmd->ctx->interp), NULL));
632  return ERROR_FAIL;
633  }
634 
635  /* We want any events to be processed before the prompt */
637 
638  for (target = all_targets; target; target = target->next) {
640  target->running_alg = false;
641  }
642 
643  return retval;
644 }
645 
646 static int identity_virt2phys(struct target *target,
647  target_addr_t virtual, target_addr_t *physical)
648 {
649  *physical = virtual;
650  return ERROR_OK;
651 }
652 
653 static int no_mmu(struct target *target, int *enabled)
654 {
655  *enabled = 0;
656  return ERROR_OK;
657 }
658 
663 static inline void target_reset_examined(struct target *target)
664 {
665  target->examined = false;
666 }
667 
668 static int default_examine(struct target *target)
669 {
671  return ERROR_OK;
672 }
673 
674 /* no check by default */
675 static int default_check_reset(struct target *target)
676 {
677  return ERROR_OK;
678 }
679 
680 /* Equivalent Tcl code arp_examine_one is in src/target/startup.tcl
681  * Keep in sync */
683 {
684  LOG_TARGET_DEBUG(target, "Examination started");
685 
687 
688  int retval = target->type->examine(target);
689  if (retval != ERROR_OK) {
690  LOG_TARGET_ERROR(target, "Examination failed");
691  LOG_TARGET_DEBUG(target, "examine() returned error code %d", retval);
694  return retval;
695  }
696 
699 
700  LOG_TARGET_INFO(target, "Examination succeed");
701  return ERROR_OK;
702 }
703 
704 static int jtag_enable_callback(enum jtag_event event, void *priv)
705 {
706  struct target *target = priv;
707 
708  if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
709  return ERROR_OK;
710 
712 
713  return target_examine_one(target);
714 }
715 
716 /* Targets that correctly implement init + examine, i.e.
717  * no communication with target during init:
718  *
719  * XScale
720  */
721 int target_examine(void)
722 {
723  int retval = ERROR_OK;
724  struct target *target;
725 
726  for (target = all_targets; target; target = target->next) {
727  /* defer examination, but don't skip it */
728  if (!target->tap->enabled) {
730  target);
731  continue;
732  }
733 
734  if (target->defer_examine)
735  continue;
736 
737  int retval2 = target_examine_one(target);
738  if (retval2 != ERROR_OK) {
739  LOG_WARNING("target %s examination failed", target_name(target));
740  retval = retval2;
741  }
742  }
743  return retval;
744 }
745 
746 const char *target_type_name(const struct target *target)
747 {
748  return target->type->name;
749 }
750 
752 {
753  if (!target_was_examined(target)) {
754  LOG_ERROR("Target not examined yet");
755  return ERROR_FAIL;
756  }
757  if (!target->type->soft_reset_halt) {
758  LOG_ERROR("Target %s does not support soft_reset_halt",
760  return ERROR_FAIL;
761  }
762  return target->type->soft_reset_halt(target);
763 }
764 
784  int num_mem_params, struct mem_param *mem_params,
785  int num_reg_params, struct reg_param *reg_param,
786  target_addr_t entry_point, target_addr_t exit_point,
787  unsigned int timeout_ms, void *arch_info)
788 {
789  int retval = ERROR_FAIL;
790 
791  if (!target_was_examined(target)) {
792  LOG_ERROR("Target not examined yet");
793  goto done;
794  }
795  if (!target->type->run_algorithm) {
796  LOG_ERROR("Target type '%s' does not support %s",
797  target_type_name(target), __func__);
798  goto done;
799  }
800 
801  target->running_alg = true;
802  retval = target->type->run_algorithm(target,
803  num_mem_params, mem_params,
804  num_reg_params, reg_param,
805  entry_point, exit_point, timeout_ms, arch_info);
806  target->running_alg = false;
807 
808 done:
809  return retval;
810 }
811 
825  int num_mem_params, struct mem_param *mem_params,
826  int num_reg_params, struct reg_param *reg_params,
827  target_addr_t entry_point, target_addr_t exit_point,
828  void *arch_info)
829 {
830  int retval = ERROR_FAIL;
831 
832  if (!target_was_examined(target)) {
833  LOG_ERROR("Target not examined yet");
834  goto done;
835  }
836  if (!target->type->start_algorithm) {
837  LOG_ERROR("Target type '%s' does not support %s",
838  target_type_name(target), __func__);
839  goto done;
840  }
841  if (target->running_alg) {
842  LOG_ERROR("Target is already running an algorithm");
843  goto done;
844  }
845 
846  target->running_alg = true;
847  retval = target->type->start_algorithm(target,
848  num_mem_params, mem_params,
849  num_reg_params, reg_params,
850  entry_point, exit_point, arch_info);
851 
852 done:
853  return retval;
854 }
855 
869  int num_mem_params, struct mem_param *mem_params,
870  int num_reg_params, struct reg_param *reg_params,
871  target_addr_t exit_point, unsigned int timeout_ms,
872  void *arch_info)
873 {
874  int retval = ERROR_FAIL;
875 
876  if (!target->type->wait_algorithm) {
877  LOG_ERROR("Target type '%s' does not support %s",
878  target_type_name(target), __func__);
879  goto done;
880  }
881  if (!target->running_alg) {
882  LOG_ERROR("Target is not running an algorithm");
883  goto done;
884  }
885 
886  retval = target->type->wait_algorithm(target,
887  num_mem_params, mem_params,
888  num_reg_params, reg_params,
889  exit_point, timeout_ms, arch_info);
890  if (retval != ERROR_TARGET_TIMEOUT)
891  target->running_alg = false;
892 
893 done:
894  return retval;
895 }
896 
941  const uint8_t *buffer, uint32_t count, int block_size,
942  int num_mem_params, struct mem_param *mem_params,
943  int num_reg_params, struct reg_param *reg_params,
944  uint32_t buffer_start, uint32_t buffer_size,
945  uint32_t entry_point, uint32_t exit_point, void *arch_info)
946 {
947  int retval;
948  int timeout = 0;
949 
950  const uint8_t *buffer_orig = buffer;
951 
952  /* Set up working area. First word is write pointer, second word is read pointer,
953  * rest is fifo data area. */
954  uint32_t wp_addr = buffer_start;
955  uint32_t rp_addr = buffer_start + 4;
956  uint32_t fifo_start_addr = buffer_start + 8;
957  uint32_t fifo_end_addr = buffer_start + buffer_size;
958 
959  uint32_t wp = fifo_start_addr;
960  uint32_t rp = fifo_start_addr;
961 
962  /* validate block_size is 2^n */
963  assert(IS_PWR_OF_2(block_size));
964 
965  retval = target_write_u32(target, wp_addr, wp);
966  if (retval != ERROR_OK)
967  return retval;
968  retval = target_write_u32(target, rp_addr, rp);
969  if (retval != ERROR_OK)
970  return retval;
971 
972  /* Start up algorithm on target and let it idle while writing the first chunk */
973  retval = target_start_algorithm(target, num_mem_params, mem_params,
974  num_reg_params, reg_params,
975  entry_point,
976  exit_point,
977  arch_info);
978 
979  if (retval != ERROR_OK) {
980  LOG_ERROR("error starting target flash write algorithm");
981  return retval;
982  }
983 
984  while (count > 0) {
985 
986  retval = target_read_u32(target, rp_addr, &rp);
987  if (retval != ERROR_OK) {
988  LOG_ERROR("failed to get read pointer");
989  break;
990  }
991 
992  LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
993  (size_t) (buffer - buffer_orig), count, wp, rp);
994 
995  if (rp == 0) {
996  LOG_ERROR("flash write algorithm aborted by target");
998  break;
999  }
1000 
1001  if (!IS_ALIGNED(rp - fifo_start_addr, block_size) || rp < fifo_start_addr || rp >= fifo_end_addr) {
1002  LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
1003  break;
1004  }
1005 
1006  /* Count the number of bytes available in the fifo without
1007  * crossing the wrap around. Make sure to not fill it completely,
1008  * because that would make wp == rp and that's the empty condition. */
1009  uint32_t thisrun_bytes;
1010  if (rp > wp)
1011  thisrun_bytes = rp - wp - block_size;
1012  else if (rp > fifo_start_addr)
1013  thisrun_bytes = fifo_end_addr - wp;
1014  else
1015  thisrun_bytes = fifo_end_addr - wp - block_size;
1016 
1017  if (thisrun_bytes == 0) {
1018  /* Throttle polling a bit if transfer is (much) faster than flash
1019  * programming. The exact delay shouldn't matter as long as it's
1020  * less than buffer size / flash speed. This is very unlikely to
1021  * run when using high latency connections such as USB. */
1022  alive_sleep(2);
1023 
1024  /* to stop an infinite loop on some targets check and increment a timeout
1025  * this issue was observed on a stellaris using the new ICDI interface */
1026  if (timeout++ >= 2500) {
1027  LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
1029  }
1030  continue;
1031  }
1032 
1033  /* reset our timeout */
1034  timeout = 0;
1035 
1036  /* Limit to the amount of data we actually want to write */
1037  if (thisrun_bytes > count * block_size)
1038  thisrun_bytes = count * block_size;
1039 
1040  /* Force end of large blocks to be word aligned */
1041  if (thisrun_bytes >= 16)
1042  thisrun_bytes -= (rp + thisrun_bytes) & 0x03;
1043 
1044  /* Write data to fifo */
1045  retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
1046  if (retval != ERROR_OK)
1047  break;
1048 
1049  /* Update counters and wrap write pointer */
1050  buffer += thisrun_bytes;
1051  count -= thisrun_bytes / block_size;
1052  wp += thisrun_bytes;
1053  if (wp >= fifo_end_addr)
1054  wp = fifo_start_addr;
1055 
1056  /* Store updated write pointer to target */
1057  retval = target_write_u32(target, wp_addr, wp);
1058  if (retval != ERROR_OK)
1059  break;
1060 
1061  /* Avoid GDB timeouts */
1062  keep_alive();
1063  }
1064 
1065  if (retval != ERROR_OK) {
1066  /* abort flash write algorithm on target */
1067  target_write_u32(target, wp_addr, 0);
1068  }
1069 
1070  int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
1071  num_reg_params, reg_params,
1072  exit_point,
1073  10000,
1074  arch_info);
1075 
1076  if (retval2 != ERROR_OK) {
1077  LOG_ERROR("error waiting for target flash write algorithm");
1078  retval = retval2;
1079  }
1080 
1081  if (retval == ERROR_OK) {
1082  /* check if algorithm set rp = 0 after fifo writer loop finished */
1083  retval = target_read_u32(target, rp_addr, &rp);
1084  if (retval == ERROR_OK && rp == 0) {
1085  LOG_ERROR("flash write algorithm aborted by target");
1087  }
1088  }
1089 
1090  return retval;
1091 }
1092 
1094  uint8_t *buffer, uint32_t count, int block_size,
1095  int num_mem_params, struct mem_param *mem_params,
1096  int num_reg_params, struct reg_param *reg_params,
1097  uint32_t buffer_start, uint32_t buffer_size,
1098  uint32_t entry_point, uint32_t exit_point, void *arch_info)
1099 {
1100  int retval;
1101  int timeout = 0;
1102 
1103  const uint8_t *buffer_orig = buffer;
1104 
1105  /* Set up working area. First word is write pointer, second word is read pointer,
1106  * rest is fifo data area. */
1107  uint32_t wp_addr = buffer_start;
1108  uint32_t rp_addr = buffer_start + 4;
1109  uint32_t fifo_start_addr = buffer_start + 8;
1110  uint32_t fifo_end_addr = buffer_start + buffer_size;
1111 
1112  uint32_t wp = fifo_start_addr;
1113  uint32_t rp = fifo_start_addr;
1114 
1115  /* validate block_size is 2^n */
1116  assert(IS_PWR_OF_2(block_size));
1117 
1118  retval = target_write_u32(target, wp_addr, wp);
1119  if (retval != ERROR_OK)
1120  return retval;
1121  retval = target_write_u32(target, rp_addr, rp);
1122  if (retval != ERROR_OK)
1123  return retval;
1124 
1125  /* Start up algorithm on target */
1126  retval = target_start_algorithm(target, num_mem_params, mem_params,
1127  num_reg_params, reg_params,
1128  entry_point,
1129  exit_point,
1130  arch_info);
1131 
1132  if (retval != ERROR_OK) {
1133  LOG_ERROR("error starting target flash read algorithm");
1134  return retval;
1135  }
1136 
1137  while (count > 0) {
1138  retval = target_read_u32(target, wp_addr, &wp);
1139  if (retval != ERROR_OK) {
1140  LOG_ERROR("failed to get write pointer");
1141  break;
1142  }
1143 
1144  LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
1145  (size_t)(buffer - buffer_orig), count, wp, rp);
1146 
1147  if (wp == 0) {
1148  LOG_ERROR("flash read algorithm aborted by target");
1150  break;
1151  }
1152 
1153  if (!IS_ALIGNED(wp - fifo_start_addr, block_size) || wp < fifo_start_addr || wp >= fifo_end_addr) {
1154  LOG_ERROR("corrupted fifo write pointer 0x%" PRIx32, wp);
1155  break;
1156  }
1157 
1158  /* Count the number of bytes available in the fifo without
1159  * crossing the wrap around. */
1160  uint32_t thisrun_bytes;
1161  if (wp >= rp)
1162  thisrun_bytes = wp - rp;
1163  else
1164  thisrun_bytes = fifo_end_addr - rp;
1165 
1166  if (thisrun_bytes == 0) {
1167  /* Throttle polling a bit if transfer is (much) faster than flash
1168  * reading. The exact delay shouldn't matter as long as it's
1169  * less than buffer size / flash speed. This is very unlikely to
1170  * run when using high latency connections such as USB. */
1171  alive_sleep(2);
1172 
1173  /* to stop an infinite loop on some targets check and increment a timeout
1174  * this issue was observed on a stellaris using the new ICDI interface */
1175  if (timeout++ >= 2500) {
1176  LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
1178  }
1179  continue;
1180  }
1181 
1182  /* Reset our timeout */
1183  timeout = 0;
1184 
1185  /* Limit to the amount of data we actually want to read */
1186  if (thisrun_bytes > count * block_size)
1187  thisrun_bytes = count * block_size;
1188 
1189  /* Force end of large blocks to be word aligned */
1190  if (thisrun_bytes >= 16)
1191  thisrun_bytes -= (rp + thisrun_bytes) & 0x03;
1192 
1193  /* Read data from fifo */
1194  retval = target_read_buffer(target, rp, thisrun_bytes, buffer);
1195  if (retval != ERROR_OK)
1196  break;
1197 
1198  /* Update counters and wrap write pointer */
1199  buffer += thisrun_bytes;
1200  count -= thisrun_bytes / block_size;
1201  rp += thisrun_bytes;
1202  if (rp >= fifo_end_addr)
1203  rp = fifo_start_addr;
1204 
1205  /* Store updated write pointer to target */
1206  retval = target_write_u32(target, rp_addr, rp);
1207  if (retval != ERROR_OK)
1208  break;
1209 
1210  /* Avoid GDB timeouts */
1211  keep_alive();
1212 
1214  retval = ERROR_SERVER_INTERRUPTED;
1215  break;
1216  }
1217  }
1218 
1219  if (retval != ERROR_OK) {
1220  /* abort flash write algorithm on target */
1221  target_write_u32(target, rp_addr, 0);
1222  }
1223 
1224  int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
1225  num_reg_params, reg_params,
1226  exit_point,
1227  10000,
1228  arch_info);
1229 
1230  if (retval2 != ERROR_OK) {
1231  LOG_ERROR("error waiting for target flash write algorithm");
1232  retval = retval2;
1233  }
1234 
1235  if (retval == ERROR_OK) {
1236  /* check if algorithm set wp = 0 after fifo writer loop finished */
1237  retval = target_read_u32(target, wp_addr, &wp);
1238  if (retval == ERROR_OK && wp == 0) {
1239  LOG_ERROR("flash read algorithm aborted by target");
1241  }
1242  }
1243 
1244  return retval;
1245 }
1246 
1248  target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1249 {
1250  if (!target_was_examined(target)) {
1251  LOG_ERROR("Target not examined yet");
1252  return ERROR_FAIL;
1253  }
1254  if (!target->type->read_memory) {
1255  LOG_ERROR("Target %s doesn't support read_memory", target_name(target));
1256  return ERROR_FAIL;
1257  }
1259 }
1260 
1262  target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1263 {
1264  if (!target_was_examined(target)) {
1265  LOG_ERROR("Target not examined yet");
1266  return ERROR_FAIL;
1267  }
1268  if (!target->type->read_phys_memory) {
1269  LOG_ERROR("Target %s doesn't support read_phys_memory", target_name(target));
1270  return ERROR_FAIL;
1271  }
1273 }
1274 
1276  target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1277 {
1278  if (!target_was_examined(target)) {
1279  LOG_ERROR("Target not examined yet");
1280  return ERROR_FAIL;
1281  }
1282  if (!target->type->write_memory) {
1283  LOG_ERROR("Target %s doesn't support write_memory", target_name(target));
1284  return ERROR_FAIL;
1285  }
1287 }
1288 
1290  target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1291 {
1292  if (!target_was_examined(target)) {
1293  LOG_ERROR("Target not examined yet");
1294  return ERROR_FAIL;
1295  }
1296  if (!target->type->write_phys_memory) {
1297  LOG_ERROR("Target %s doesn't support write_phys_memory", target_name(target));
1298  return ERROR_FAIL;
1299  }
1301 }
1302 
1304  struct breakpoint *breakpoint)
1305 {
1306  if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1307  LOG_TARGET_ERROR(target, "not halted (add breakpoint)");
1308  return ERROR_TARGET_NOT_HALTED;
1309  }
1311 }
1312 
1314  struct breakpoint *breakpoint)
1315 {
1316  if (target->state != TARGET_HALTED) {
1317  LOG_TARGET_ERROR(target, "not halted (add context breakpoint)");
1318  return ERROR_TARGET_NOT_HALTED;
1319  }
1321 }
1322 
1324  struct breakpoint *breakpoint)
1325 {
1326  if (target->state != TARGET_HALTED) {
1327  LOG_TARGET_ERROR(target, "not halted (add hybrid breakpoint)");
1328  return ERROR_TARGET_NOT_HALTED;
1329  }
1331 }
1332 
1334  struct breakpoint *breakpoint)
1335 {
1337 }
1338 
1340  struct watchpoint *watchpoint)
1341 {
1342  if (target->state != TARGET_HALTED) {
1343  LOG_TARGET_ERROR(target, "not halted (add watchpoint)");
1344  return ERROR_TARGET_NOT_HALTED;
1345  }
1347 }
1349  struct watchpoint *watchpoint)
1350 {
1352 }
1354  struct watchpoint **hit_watchpoint)
1355 {
1356  if (target->state != TARGET_HALTED) {
1357  LOG_TARGET_ERROR(target, "not halted (hit watchpoint)");
1358  return ERROR_TARGET_NOT_HALTED;
1359  }
1360 
1361  if (!target->type->hit_watchpoint) {
1362  /* For backward compatible, if hit_watchpoint is not implemented,
1363  * return ERROR_FAIL such that gdb_server will not take the nonsense
1364  * information. */
1365  return ERROR_FAIL;
1366  }
1367 
1368  return target->type->hit_watchpoint(target, hit_watchpoint);
1369 }
1370 
1371 const char *target_get_gdb_arch(const struct target *target)
1372 {
1373  if (!target->type->get_gdb_arch)
1374  return NULL;
1375  return target->type->get_gdb_arch(target);
1376 }
1377 
1379  struct reg **reg_list[], int *reg_list_size,
1380  enum target_register_class reg_class)
1381 {
1382  int result = ERROR_FAIL;
1383 
1384  if (!target_was_examined(target)) {
1385  LOG_ERROR("Target not examined yet");
1386  goto done;
1387  }
1388 
1389  result = target->type->get_gdb_reg_list(target, reg_list,
1390  reg_list_size, reg_class);
1391 
1392 done:
1393  if (result != ERROR_OK) {
1394  *reg_list = NULL;
1395  *reg_list_size = 0;
1396  }
1397  return result;
1398 }
1399 
1401  struct reg **reg_list[], int *reg_list_size,
1402  enum target_register_class reg_class)
1403 {
1406  reg_list_size, reg_class) == ERROR_OK)
1407  return ERROR_OK;
1408  return target_get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1409 }
1410 
1412 {
1413  /*
1414  * exclude all the targets that don't provide get_gdb_reg_list
1415  * or that have explicit gdb_max_connection == 0
1416  */
1418 }
1419 
1421  bool current, target_addr_t address, bool handle_breakpoints)
1422 {
1423  int retval;
1424 
1426 
1427  retval = target->type->step(target, current, address, handle_breakpoints);
1428  if (retval != ERROR_OK)
1429  return retval;
1430 
1432 
1433  return retval;
1434 }
1435 
1437 {
1438  if (target->state != TARGET_HALTED) {
1439  LOG_TARGET_ERROR(target, "not halted (gdb fileio)");
1440  return ERROR_TARGET_NOT_HALTED;
1441  }
1443 }
1444 
1445 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1446 {
1447  if (target->state != TARGET_HALTED) {
1448  LOG_TARGET_ERROR(target, "not halted (gdb fileio end)");
1449  return ERROR_TARGET_NOT_HALTED;
1450  }
1451  return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1452 }
1453 
1455 {
1456  unsigned int bits = target_address_bits(target);
1457  if (sizeof(target_addr_t) * 8 == bits)
1458  return (target_addr_t) -1;
1459  else
1460  return (((target_addr_t) 1) << bits) - 1;
1461 }
1462 
1463 unsigned int target_address_bits(struct target *target)
1464 {
1465  if (target->type->address_bits)
1466  return target->type->address_bits(target);
1467  return 32;
1468 }
1469 
1470 unsigned int target_data_bits(struct target *target)
1471 {
1472  if (target->type->data_bits)
1473  return target->type->data_bits(target);
1474  return 32;
1475 }
1476 
1477 static int target_profiling(struct target *target, uint32_t *samples,
1478  uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1479 {
1480  return target->type->profiling(target, samples, max_num_samples,
1481  num_samples, seconds);
1482 }
1483 
1484 static int handle_target(void *priv);
1485 
1486 static int target_init_one(struct command_context *cmd_ctx,
1487  struct target *target)
1488 {
1490 
1491  struct target_type *type = target->type;
1492  if (!type->examine)
1493  type->examine = default_examine;
1494 
1495  if (!type->check_reset)
1496  type->check_reset = default_check_reset;
1497 
1498  assert(type->init_target);
1499 
1500  int retval = type->init_target(cmd_ctx, target);
1501  if (retval != ERROR_OK) {
1502  LOG_ERROR("target '%s' init failed", target_name(target));
1503  return retval;
1504  }
1505 
1506  /* Sanity-check MMU support ... stub in what we must, to help
1507  * implement it in stages, but warn if we need to do so.
1508  */
1509  if (type->mmu) {
1510  if (!type->virt2phys) {
1511  LOG_ERROR("type '%s' is missing virt2phys", target_name(target));
1512  type->virt2phys = identity_virt2phys;
1513  }
1514  } else {
1515  /* Make sure no-MMU targets all behave the same: make no
1516  * distinction between physical and virtual addresses, and
1517  * ensure that virt2phys() is always an identity mapping.
1518  */
1519  if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1520  LOG_WARNING("type '%s' has bad MMU hooks", target_name(target));
1521 
1522  type->mmu = no_mmu;
1523  type->write_phys_memory = type->write_memory;
1524  type->read_phys_memory = type->read_memory;
1525  type->virt2phys = identity_virt2phys;
1526  }
1527 
1528  if (!target->type->read_buffer)
1530 
1531  if (!target->type->write_buffer)
1533 
1536 
1537  if (!target->type->gdb_fileio_end)
1539 
1540  if (!target->type->profiling)
1542 
1543  return ERROR_OK;
1544 }
1545 
1546 static int target_init(struct command_context *cmd_ctx)
1547 {
1548  struct target *target;
1549  int retval;
1550 
1551  for (target = all_targets; target; target = target->next) {
1552  retval = target_init_one(cmd_ctx, target);
1553  if (retval != ERROR_OK)
1554  return retval;
1555  }
1556 
1557  if (!all_targets)
1558  return ERROR_OK;
1559 
1560  retval = target_register_user_commands(cmd_ctx);
1561  if (retval != ERROR_OK)
1562  return retval;
1563 
1566  if (retval != ERROR_OK)
1567  return retval;
1568 
1569  return ERROR_OK;
1570 }
1571 
1572 COMMAND_HANDLER(handle_target_init_command)
1573 {
1574  int retval;
1575 
1576  if (CMD_ARGC != 0)
1578 
1579  static bool target_initialized;
1580  if (target_initialized) {
1581  LOG_INFO("'target init' has already been called");
1582  return ERROR_OK;
1583  }
1584  target_initialized = true;
1585 
1586  retval = command_run_line(CMD_CTX, "init_targets");
1587  if (retval != ERROR_OK)
1588  return retval;
1589 
1590  retval = command_run_line(CMD_CTX, "init_target_events");
1591  if (retval != ERROR_OK)
1592  return retval;
1593 
1594  retval = command_run_line(CMD_CTX, "init_board");
1595  if (retval != ERROR_OK)
1596  return retval;
1597 
1598  LOG_DEBUG("Initializing targets...");
1599  return target_init(CMD_CTX);
1600 }
1601 
1602 int target_register_event_callback(int (*callback)(struct target *target,
1603  enum target_event event, void *priv), void *priv)
1604 {
1605  struct target_event_callback **callbacks_p = &target_event_callbacks;
1606 
1607  if (!callback)
1609 
1610  if (*callbacks_p) {
1611  while ((*callbacks_p)->next)
1612  callbacks_p = &((*callbacks_p)->next);
1613  callbacks_p = &((*callbacks_p)->next);
1614  }
1615 
1616  (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1617  (*callbacks_p)->callback = callback;
1618  (*callbacks_p)->priv = priv;
1619  (*callbacks_p)->next = NULL;
1620 
1621  return ERROR_OK;
1622 }
1623 
1625  enum target_reset_mode reset_mode, void *priv), void *priv)
1626 {
1627  struct target_reset_callback *entry;
1628 
1629  if (!callback)
1631 
1632  entry = malloc(sizeof(struct target_reset_callback));
1633  if (!entry) {
1634  LOG_ERROR("error allocating buffer for reset callback entry");
1636  }
1637 
1638  entry->callback = callback;
1639  entry->priv = priv;
1640  list_add(&entry->list, &target_reset_callback_list);
1641 
1642 
1643  return ERROR_OK;
1644 }
1645 
1647  size_t len, uint8_t *data, void *priv), void *priv)
1648 {
1649  struct target_trace_callback *entry;
1650 
1651  if (!callback)
1653 
1654  entry = malloc(sizeof(struct target_trace_callback));
1655  if (!entry) {
1656  LOG_ERROR("error allocating buffer for trace callback entry");
1658  }
1659 
1660  entry->callback = callback;
1661  entry->priv = priv;
1662  list_add(&entry->list, &target_trace_callback_list);
1663 
1664 
1665  return ERROR_OK;
1666 }
1667 
1669  unsigned int time_ms, enum target_timer_type type, void *priv)
1670 {
1671  struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1672 
1673  if (!callback)
1675 
1676  if (*callbacks_p) {
1677  while ((*callbacks_p)->next)
1678  callbacks_p = &((*callbacks_p)->next);
1679  callbacks_p = &((*callbacks_p)->next);
1680  }
1681 
1682  (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1683  (*callbacks_p)->callback = callback;
1684  (*callbacks_p)->type = type;
1685  (*callbacks_p)->time_ms = time_ms;
1686  (*callbacks_p)->removed = false;
1687 
1688  (*callbacks_p)->when = timeval_ms() + time_ms;
1690 
1691  (*callbacks_p)->priv = priv;
1692  (*callbacks_p)->next = NULL;
1693 
1694  return ERROR_OK;
1695 }
1696 
1698  enum target_event event, void *priv), void *priv)
1699 {
1702 
1703  if (!callback)
1705 
1706  while (c) {
1707  struct target_event_callback *next = c->next;
1708  if ((c->callback == callback) && (c->priv == priv)) {
1709  *p = next;
1710  free(c);
1711  return ERROR_OK;
1712  } else
1713  p = &(c->next);
1714  c = next;
1715  }
1716 
1717  return ERROR_OK;
1718 }
1719 
1721  enum target_reset_mode reset_mode, void *priv), void *priv)
1722 {
1723  struct target_reset_callback *entry;
1724 
1725  if (!callback)
1727 
1728  list_for_each_entry(entry, &target_reset_callback_list, list) {
1729  if (entry->callback == callback && entry->priv == priv) {
1730  list_del(&entry->list);
1731  free(entry);
1732  break;
1733  }
1734  }
1735 
1736  return ERROR_OK;
1737 }
1738 
1740  size_t len, uint8_t *data, void *priv), void *priv)
1741 {
1742  struct target_trace_callback *entry;
1743 
1744  if (!callback)
1746 
1747  list_for_each_entry(entry, &target_trace_callback_list, list) {
1748  if (entry->callback == callback && entry->priv == priv) {
1749  list_del(&entry->list);
1750  free(entry);
1751  break;
1752  }
1753  }
1754 
1755  return ERROR_OK;
1756 }
1757 
1759 {
1760  if (!callback)
1762 
1764  c; c = c->next) {
1765  if ((c->callback == callback) && (c->priv == priv)) {
1766  c->removed = true;
1767  return ERROR_OK;
1768  }
1769  }
1770 
1771  return ERROR_FAIL;
1772 }
1773 
1775 {
1777  struct target_event_callback *next_callback;
1778 
1779  if (event == TARGET_EVENT_HALTED) {
1780  /* execute early halted first */
1782  }
1783 
1784  LOG_DEBUG("target event %i (%s) for core %s", event,
1785  target_event_name(event),
1786  target_name(target));
1787 
1788  target_handle_event(target, event);
1789 
1790  while (callback) {
1791  next_callback = callback->next;
1792  callback->callback(target, event, callback->priv);
1793  callback = next_callback;
1794  }
1795 
1796  return ERROR_OK;
1797 }
1798 
1800 {
1802 
1803  LOG_DEBUG("target reset %i (%s)", reset_mode,
1804  nvp_value2name(nvp_reset_modes, reset_mode)->name);
1805 
1806  list_for_each_entry(callback, &target_reset_callback_list, list)
1807  callback->callback(target, reset_mode, callback->priv);
1808 
1809  return ERROR_OK;
1810 }
1811 
1812 int target_call_trace_callbacks(struct target *target, size_t len, uint8_t *data)
1813 {
1815 
1816  list_for_each_entry(callback, &target_trace_callback_list, list)
1817  callback->callback(target, len, data, callback->priv);
1818 
1819  return ERROR_OK;
1820 }
1821 
1823  struct target_timer_callback *cb, int64_t *now)
1824 {
1825  cb->when = *now + cb->time_ms;
1826  return ERROR_OK;
1827 }
1828 
1830  int64_t *now)
1831 {
1832  cb->callback(cb->priv);
1833 
1834  if (cb->type == TARGET_TIMER_TYPE_PERIODIC)
1836 
1838 }
1839 
1841 {
1842  static bool callback_processing;
1843 
1844  /* Do not allow nesting */
1845  if (callback_processing)
1846  return ERROR_OK;
1847 
1848  callback_processing = true;
1849 
1850  keep_alive();
1851 
1852  int64_t now = timeval_ms();
1853 
1854  /* Initialize to a default value that's a ways into the future.
1855  * The loop below will make it closer to now if there are
1856  * callbacks that want to be called sooner. */
1857  target_timer_next_event_value = now + 1000;
1858 
1859  /* Store an address of the place containing a pointer to the
1860  * next item; initially, that's a standalone "root of the
1861  * list" variable. */
1863  while (callback && *callback) {
1864  if ((*callback)->removed) {
1865  struct target_timer_callback *p = *callback;
1866  *callback = (*callback)->next;
1867  free(p);
1868  continue;
1869  }
1870 
1871  bool call_it = (*callback)->callback &&
1872  ((!checktime && (*callback)->type == TARGET_TIMER_TYPE_PERIODIC) ||
1873  now >= (*callback)->when);
1874 
1875  if (call_it)
1877 
1878  if (!(*callback)->removed && (*callback)->when < target_timer_next_event_value)
1879  target_timer_next_event_value = (*callback)->when;
1880 
1881  callback = &(*callback)->next;
1882  }
1883 
1884  callback_processing = false;
1885  return ERROR_OK;
1886 }
1887 
1889 {
1891 }
1892 
1893 /* invoke periodic callbacks immediately */
1895 {
1897 }
1898 
1900 {
1902 }
1903 
1904 /* Prints the working area layout for debug purposes */
1905 static void print_wa_layout(struct target *target)
1906 {
1907  struct working_area *c = target->working_areas;
1908 
1909  while (c) {
1910  LOG_DEBUG("%c%c " TARGET_ADDR_FMT "-" TARGET_ADDR_FMT " (%" PRIu32 " bytes)",
1911  c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1912  c->address, c->address + c->size - 1, c->size);
1913  c = c->next;
1914  }
1915 }
1916 
1917 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1918 static void target_split_working_area(struct working_area *area, uint32_t size)
1919 {
1920  assert(area->free); /* Shouldn't split an allocated area */
1921  assert(size <= area->size); /* Caller should guarantee this */
1922 
1923  /* Split only if not already the right size */
1924  if (size < area->size) {
1925  struct working_area *new_wa = malloc(sizeof(*new_wa));
1926 
1927  if (!new_wa)
1928  return;
1929 
1930  new_wa->next = area->next;
1931  new_wa->size = area->size - size;
1932  new_wa->address = area->address + size;
1933  new_wa->backup = NULL;
1934  new_wa->user = NULL;
1935  new_wa->free = true;
1936 
1937  area->next = new_wa;
1938  area->size = size;
1939 
1940  /* If backup memory was allocated to this area, it has the wrong size
1941  * now so free it and it will be reallocated if/when needed */
1942  free(area->backup);
1943  area->backup = NULL;
1944  }
1945 }
1946 
1947 /* Merge all adjacent free areas into one */
1949 {
1950  struct working_area *c = target->working_areas;
1951 
1952  while (c && c->next) {
1953  assert(c->next->address == c->address + c->size); /* This is an invariant */
1954 
1955  /* Find two adjacent free areas */
1956  if (c->free && c->next->free) {
1957  /* Merge the last into the first */
1958  c->size += c->next->size;
1959 
1960  /* Remove the last */
1961  struct working_area *to_be_freed = c->next;
1962  c->next = c->next->next;
1963  free(to_be_freed->backup);
1964  free(to_be_freed);
1965 
1966  /* If backup memory was allocated to the remaining area, it's has
1967  * the wrong size now */
1968  free(c->backup);
1969  c->backup = NULL;
1970  } else {
1971  c = c->next;
1972  }
1973  }
1974 }
1975 
1976 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1977 {
1978  /* Reevaluate working area address based on MMU state*/
1979  if (!target->working_areas) {
1980  int retval;
1981  int enabled;
1982 
1983  retval = target->type->mmu(target, &enabled);
1984  if (retval != ERROR_OK)
1985  return retval;
1986 
1987  if (!enabled) {
1989  LOG_DEBUG("MMU disabled, using physical "
1990  "address for working memory " TARGET_ADDR_FMT,
1993  } else {
1994  LOG_ERROR("No working memory available. "
1995  "Specify -work-area-phys to target.");
1997  }
1998  } else {
2000  LOG_DEBUG("MMU enabled, using virtual "
2001  "address for working memory " TARGET_ADDR_FMT,
2004  } else {
2005  LOG_ERROR("No working memory available. "
2006  "Specify -work-area-virt to target.");
2008  }
2009  }
2010 
2011  /* Set up initial working area on first call */
2012  struct working_area *new_wa = malloc(sizeof(*new_wa));
2013  if (new_wa) {
2014  new_wa->next = NULL;
2015  new_wa->size = ALIGN_DOWN(target->working_area_size, 4); /* 4-byte align */
2016  new_wa->address = target->working_area;
2017  new_wa->backup = NULL;
2018  new_wa->user = NULL;
2019  new_wa->free = true;
2020  }
2021 
2022  target->working_areas = new_wa;
2023  }
2024 
2025  /* only allocate multiples of 4 byte */
2026  size = ALIGN_UP(size, 4);
2027 
2028  struct working_area *c = target->working_areas;
2029 
2030  /* Find the first large enough working area */
2031  while (c) {
2032  if (c->free && c->size >= size)
2033  break;
2034  c = c->next;
2035  }
2036 
2037  if (!c)
2039 
2040  /* Split the working area into the requested size */
2042 
2043  LOG_DEBUG("allocated new working area of %" PRIu32 " bytes at address " TARGET_ADDR_FMT,
2044  size, c->address);
2045 
2046  if (target->backup_working_area) {
2047  if (!c->backup) {
2048  c->backup = malloc(c->size);
2049  if (!c->backup)
2050  return ERROR_FAIL;
2051  }
2052 
2053  int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
2054  if (retval != ERROR_OK)
2055  return retval;
2056  }
2057 
2058  /* mark as used, and return the new (reused) area */
2059  c->free = false;
2060  *area = c;
2061 
2062  /* user pointer */
2063  c->user = area;
2064 
2066 
2067  return ERROR_OK;
2068 }
2069 
2070 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
2071 {
2072  int retval;
2073 
2074  retval = target_alloc_working_area_try(target, size, area);
2076  LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
2077  return retval;
2078 
2079 }
2080 
2081 static int target_restore_working_area(struct target *target, struct working_area *area)
2082 {
2083  int retval = ERROR_OK;
2084 
2085  if (target->backup_working_area && area->backup) {
2086  retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
2087  if (retval != ERROR_OK)
2088  LOG_ERROR("failed to restore %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
2089  area->size, area->address);
2090  }
2091 
2092  return retval;
2093 }
2094 
2095 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
2096 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
2097 {
2098  if (!area || area->free)
2099  return ERROR_OK;
2100 
2101  int retval = ERROR_OK;
2102  if (restore) {
2103  retval = target_restore_working_area(target, area);
2104  /* REVISIT: Perhaps the area should be freed even if restoring fails. */
2105  if (retval != ERROR_OK)
2106  return retval;
2107  }
2108 
2109  area->free = true;
2110 
2111  LOG_DEBUG("freed %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
2112  area->size, area->address);
2113 
2114  /* mark user pointer invalid */
2115  /* TODO: Is this really safe? It points to some previous caller's memory.
2116  * How could we know that the area pointer is still in that place and not
2117  * some other vital data? What's the purpose of this, anyway? */
2118  *area->user = NULL;
2119  area->user = NULL;
2120 
2122 
2124 
2125  return retval;
2126 }
2127 
2129 {
2130  return target_free_working_area_restore(target, area, 1);
2131 }
2132 
2133 /* free resources and restore memory, if restoring memory fails,
2134  * free up resources anyway
2135  */
2136 static void target_free_all_working_areas_restore(struct target *target, int restore)
2137 {
2138  struct working_area *c = target->working_areas;
2139 
2140  LOG_DEBUG("freeing all working areas");
2141 
2142  /* Loop through all areas, restoring the allocated ones and marking them as free */
2143  while (c) {
2144  if (!c->free) {
2145  if (restore)
2147  c->free = true;
2148  *c->user = NULL; /* Same as above */
2149  c->user = NULL;
2150  }
2151  c = c->next;
2152  }
2153 
2154  /* Run a merge pass to combine all areas into one */
2156 
2158 }
2159 
2161 {
2163 
2164  /* Now we have none or only one working area marked as free */
2165  if (target->working_areas) {
2166  /* Free the last one to allow on-the-fly moving and resizing */
2170  }
2171 }
2172 
2173 /* Find the largest number of bytes that can be allocated */
2175 {
2176  struct working_area *c = target->working_areas;
2177  uint32_t max_size = 0;
2178 
2179  if (!c)
2180  return ALIGN_DOWN(target->working_area_size, 4);
2181 
2182  while (c) {
2183  if (c->free && max_size < c->size)
2184  max_size = c->size;
2185 
2186  c = c->next;
2187  }
2188 
2189  return max_size;
2190 }
2191 
2192 static void target_destroy(struct target *target)
2193 {
2196 
2197  if (target->type->deinit_target)
2199 
2200  if (target->semihosting)
2203 
2205 
2206  struct target_event_action *teap, *temp;
2208  list_del(&teap->list);
2209  Jim_DecrRefCount(teap->interp, teap->body);
2210  free(teap);
2211  }
2212 
2214 
2215  /* release the targets SMP list */
2216  if (target->smp) {
2217  struct target_list *head, *tmp;
2218 
2220  list_del(&head->lh);
2221  head->target->smp = 0;
2222  free(head);
2223  }
2224  if (target->smp_targets != &empty_smp_targets)
2225  free(target->smp_targets);
2226  target->smp = 0;
2227  }
2228 
2230 
2231  free(target->gdb_port_override);
2232  free(target->type);
2233  free(target->trace_info);
2234  free(target->fileio_info);
2235  free(target->cmd_name);
2236  free(target);
2237 }
2238 
2239 void target_quit(void)
2240 {
2242  while (pe) {
2243  struct target_event_callback *t = pe->next;
2244  free(pe);
2245  pe = t;
2246  }
2248 
2250  while (pt) {
2251  struct target_timer_callback *t = pt->next;
2252  free(pt);
2253  pt = t;
2254  }
2256 
2257  for (struct target *target = all_targets; target;) {
2258  struct target *tmp;
2259 
2260  tmp = target->next;
2262  target = tmp;
2263  }
2264 
2265  all_targets = NULL;
2266 }
2267 
2269 {
2270  int retval;
2271  if (!target) {
2272  LOG_WARNING("No target has been configured");
2273  return ERROR_OK;
2274  }
2275 
2276  if (target->state != TARGET_HALTED)
2277  return ERROR_OK;
2278 
2279  retval = target->type->arch_state(target);
2280  return retval;
2281 }
2282 
2284  struct gdb_fileio_info *fileio_info)
2285 {
2286  /* If target does not support semi-hosting function, target
2287  has no need to provide .get_gdb_fileio_info callback.
2288  It just return ERROR_FAIL and gdb_server will return "Txx"
2289  as target halted every time. */
2290  return ERROR_FAIL;
2291 }
2292 
2294  int retcode, int fileio_errno, bool ctrl_c)
2295 {
2296  return ERROR_OK;
2297 }
2298 
2299 int target_profiling_default(struct target *target, uint32_t *samples,
2300  uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
2301 {
2302  struct timeval timeout, now;
2303 
2305  timeval_add_time(&timeout, seconds, 0);
2306 
2307  LOG_INFO("Starting profiling. Halting and resuming the"
2308  " target as often as we can...");
2309 
2310  uint32_t sample_count = 0;
2311  /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2312  struct reg *reg = register_get_by_name(target->reg_cache, "pc", true);
2313 
2314  int retval = ERROR_OK;
2315  for (;;) {
2317  if (target->state == TARGET_HALTED) {
2318  uint32_t t = buf_get_u32(reg->value, 0, 32);
2319  samples[sample_count++] = t;
2320  /* current pc, addr = 0, do not handle breakpoints, not debugging */
2321  retval = target_resume(target, true, 0, false, false);
2323  alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2324  } else if (target->state == TARGET_RUNNING) {
2325  /* We want to quickly sample the PC. */
2326  retval = target_halt(target);
2327  } else {
2328  LOG_INFO("Target not halted or running");
2329  retval = ERROR_OK;
2330  break;
2331  }
2332 
2333  if (retval != ERROR_OK)
2334  break;
2335 
2336  gettimeofday(&now, NULL);
2337  if ((sample_count >= max_num_samples) || timeval_compare(&now, &timeout) >= 0) {
2338  LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
2339  break;
2340  }
2341  }
2342 
2343  *num_samples = sample_count;
2344  return retval;
2345 }
2346 
2347 /* Single aligned words are guaranteed to use 16 or 32 bit access
2348  * mode respectively, otherwise data is handled as quickly as
2349  * possible
2350  */
2351 int target_write_buffer(struct target *target, target_addr_t address, uint32_t size, const uint8_t *buffer)
2352 {
2353  LOG_DEBUG("writing buffer of %" PRIu32 " byte at " TARGET_ADDR_FMT,
2354  size, address);
2355 
2356  if (!target_was_examined(target)) {
2357  LOG_ERROR("Target not examined yet");
2358  return ERROR_FAIL;
2359  }
2360 
2361  if (size == 0)
2362  return ERROR_OK;
2363 
2364  if ((address + size - 1) < address) {
2365  /* GDB can request this when e.g. PC is 0xfffffffc */
2366  LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2367  address,
2368  size);
2369  return ERROR_FAIL;
2370  }
2371 
2373 }
2374 
2376  target_addr_t address, uint32_t count, const uint8_t *buffer)
2377 {
2378  uint32_t size;
2379  unsigned int data_bytes = target_data_bits(target) / 8;
2380 
2381  /* Align up to maximum bytes. The loop condition makes sure the next pass
2382  * will have something to do with the size we leave to it. */
2383  for (size = 1;
2384  size < data_bytes && count >= size * 2 + (address & size);
2385  size *= 2) {
2386  if (address & size) {
2387  int retval = target_write_memory(target, address, size, 1, buffer);
2388  if (retval != ERROR_OK)
2389  return retval;
2390  address += size;
2391  count -= size;
2392  buffer += size;
2393  }
2394  }
2395 
2396  /* Write the data with as large access size as possible. */
2397  for (; size > 0; size /= 2) {
2398  uint32_t aligned = count - count % size;
2399  if (aligned > 0) {
2400  int retval = target_write_memory(target, address, size, aligned / size, buffer);
2401  if (retval != ERROR_OK)
2402  return retval;
2403  address += aligned;
2404  count -= aligned;
2405  buffer += aligned;
2406  }
2407  }
2408 
2409  return ERROR_OK;
2410 }
2411 
2412 /* Single aligned words are guaranteed to use 16 or 32 bit access
2413  * mode respectively, otherwise data is handled as quickly as
2414  * possible
2415  */
2417 {
2418  LOG_DEBUG("reading buffer of %" PRIu32 " byte at " TARGET_ADDR_FMT,
2419  size, address);
2420 
2421  if (!target_was_examined(target)) {
2422  LOG_ERROR("Target not examined yet");
2423  return ERROR_FAIL;
2424  }
2425 
2426  if (size == 0)
2427  return ERROR_OK;
2428 
2429  if ((address + size - 1) < address) {
2430  /* GDB can request this when e.g. PC is 0xfffffffc */
2431  LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2432  address,
2433  size);
2434  return ERROR_FAIL;
2435  }
2436 
2438 }
2439 
2441 {
2442  uint32_t size;
2443  unsigned int data_bytes = target_data_bits(target) / 8;
2444 
2445  /* Align up to maximum bytes. The loop condition makes sure the next pass
2446  * will have something to do with the size we leave to it. */
2447  for (size = 1;
2448  size < data_bytes && count >= size * 2 + (address & size);
2449  size *= 2) {
2450  if (address & size) {
2451  int retval = target_read_memory(target, address, size, 1, buffer);
2452  if (retval != ERROR_OK)
2453  return retval;
2454  address += size;
2455  count -= size;
2456  buffer += size;
2457  }
2458  }
2459 
2460  /* Read the data with as large access size as possible. */
2461  for (; size > 0; size /= 2) {
2462  uint32_t aligned = count - count % size;
2463  if (aligned > 0) {
2464  int retval = target_read_memory(target, address, size, aligned / size, buffer);
2465  if (retval != ERROR_OK)
2466  return retval;
2467  address += aligned;
2468  count -= aligned;
2469  buffer += aligned;
2470  }
2471  }
2472 
2473  return ERROR_OK;
2474 }
2475 
2476 int target_checksum_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t *crc)
2477 {
2478  uint8_t *buffer;
2479  int retval;
2480  uint32_t i;
2481  uint32_t checksum = 0;
2482  if (!target_was_examined(target)) {
2483  LOG_ERROR("Target not examined yet");
2484  return ERROR_FAIL;
2485  }
2486  if (!target->type->checksum_memory) {
2487  LOG_ERROR("Target %s doesn't support checksum_memory", target_name(target));
2488  return ERROR_FAIL;
2489  }
2490 
2491  retval = target->type->checksum_memory(target, address, size, &checksum);
2492  if (retval != ERROR_OK) {
2493  buffer = malloc(size);
2494  if (!buffer) {
2495  LOG_ERROR("error allocating buffer for section (%" PRIu32 " bytes)", size);
2497  }
2499  if (retval != ERROR_OK) {
2500  free(buffer);
2501  return retval;
2502  }
2503 
2504  /* convert to target endianness */
2505  for (i = 0; i < (size/sizeof(uint32_t)); i++) {
2506  uint32_t target_data;
2507  target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
2508  target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
2509  }
2510 
2511  retval = image_calculate_checksum(buffer, size, &checksum);
2512  free(buffer);
2513  }
2514 
2515  *crc = checksum;
2516 
2517  return retval;
2518 }
2519 
2521  struct target_memory_check_block *blocks, int num_blocks,
2522  uint8_t erased_value)
2523 {
2524  if (!target_was_examined(target)) {
2525  LOG_ERROR("Target not examined yet");
2526  return ERROR_FAIL;
2527  }
2528 
2530  return ERROR_NOT_IMPLEMENTED;
2531 
2532  return target->type->blank_check_memory(target, blocks, num_blocks, erased_value);
2533 }
2534 
2536 {
2537  uint8_t value_buf[8];
2538  if (!target_was_examined(target)) {
2539  LOG_ERROR("Target not examined yet");
2540  return ERROR_FAIL;
2541  }
2542 
2543  int retval = target_read_memory(target, address, 8, 1, value_buf);
2544 
2545  if (retval == ERROR_OK) {
2546  *value = target_buffer_get_u64(target, value_buf);
2547  LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2548  address,
2549  *value);
2550  } else {
2551  *value = 0x0;
2552  LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2553  address);
2554  }
2555 
2556  return retval;
2557 }
2558 
2560 {
2561  uint8_t value_buf[4];
2562  if (!target_was_examined(target)) {
2563  LOG_ERROR("Target not examined yet");
2564  return ERROR_FAIL;
2565  }
2566 
2567  int retval = target_read_memory(target, address, 4, 1, value_buf);
2568 
2569  if (retval == ERROR_OK) {
2570  *value = target_buffer_get_u32(target, value_buf);
2571  LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2572  address,
2573  *value);
2574  } else {
2575  *value = 0x0;
2576  LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2577  address);
2578  }
2579 
2580  return retval;
2581 }
2582 
2584 {
2585  uint8_t value_buf[2];
2586  if (!target_was_examined(target)) {
2587  LOG_ERROR("Target not examined yet");
2588  return ERROR_FAIL;
2589  }
2590 
2591  int retval = target_read_memory(target, address, 2, 1, value_buf);
2592 
2593  if (retval == ERROR_OK) {
2594  *value = target_buffer_get_u16(target, value_buf);
2595  LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%4.4" PRIx16,
2596  address,
2597  *value);
2598  } else {
2599  *value = 0x0;
2600  LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2601  address);
2602  }
2603 
2604  return retval;
2605 }
2606 
2608 {
2609  if (!target_was_examined(target)) {
2610  LOG_ERROR("Target not examined yet");
2611  return ERROR_FAIL;
2612  }
2613 
2614  int retval = target_read_memory(target, address, 1, 1, value);
2615 
2616  if (retval == ERROR_OK) {
2617  LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2618  address,
2619  *value);
2620  } else {
2621  *value = 0x0;
2622  LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2623  address);
2624  }
2625 
2626  return retval;
2627 }
2628 
2630 {
2631  int retval;
2632  uint8_t value_buf[8];
2633  if (!target_was_examined(target)) {
2634  LOG_ERROR("Target not examined yet");
2635  return ERROR_FAIL;
2636  }
2637 
2638  LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2639  address,
2640  value);
2641 
2642  target_buffer_set_u64(target, value_buf, value);
2643  retval = target_write_memory(target, address, 8, 1, value_buf);
2644  if (retval != ERROR_OK)
2645  LOG_DEBUG("failed: %i", retval);
2646 
2647  return retval;
2648 }
2649 
2651 {
2652  int retval;
2653  uint8_t value_buf[4];
2654  if (!target_was_examined(target)) {
2655  LOG_ERROR("Target not examined yet");
2656  return ERROR_FAIL;
2657  }
2658 
2659  LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2660  address,
2661  value);
2662 
2663  target_buffer_set_u32(target, value_buf, value);
2664  retval = target_write_memory(target, address, 4, 1, value_buf);
2665  if (retval != ERROR_OK)
2666  LOG_DEBUG("failed: %i", retval);
2667 
2668  return retval;
2669 }
2670 
2672 {
2673  int retval;
2674  uint8_t value_buf[2];
2675  if (!target_was_examined(target)) {
2676  LOG_ERROR("Target not examined yet");
2677  return ERROR_FAIL;
2678  }
2679 
2680  LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2681  address,
2682  value);
2683 
2684  target_buffer_set_u16(target, value_buf, value);
2685  retval = target_write_memory(target, address, 2, 1, value_buf);
2686  if (retval != ERROR_OK)
2687  LOG_DEBUG("failed: %i", retval);
2688 
2689  return retval;
2690 }
2691 
2693 {
2694  int retval;
2695  if (!target_was_examined(target)) {
2696  LOG_ERROR("Target not examined yet");
2697  return ERROR_FAIL;
2698  }
2699 
2700  LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2701  address, value);
2702 
2703  retval = target_write_memory(target, address, 1, 1, &value);
2704  if (retval != ERROR_OK)
2705  LOG_DEBUG("failed: %i", retval);
2706 
2707  return retval;
2708 }
2709 
2711 {
2712  int retval;
2713  uint8_t value_buf[8];
2714  if (!target_was_examined(target)) {
2715  LOG_ERROR("Target not examined yet");
2716  return ERROR_FAIL;
2717  }
2718 
2719  LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2720  address,
2721  value);
2722 
2723  target_buffer_set_u64(target, value_buf, value);
2724  retval = target_write_phys_memory(target, address, 8, 1, value_buf);
2725  if (retval != ERROR_OK)
2726  LOG_DEBUG("failed: %i", retval);
2727 
2728  return retval;
2729 }
2730 
2732 {
2733  int retval;
2734  uint8_t value_buf[4];
2735  if (!target_was_examined(target)) {
2736  LOG_ERROR("Target not examined yet");
2737  return ERROR_FAIL;
2738  }
2739 
2740  LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2741  address,
2742  value);
2743 
2744  target_buffer_set_u32(target, value_buf, value);
2745  retval = target_write_phys_memory(target, address, 4, 1, value_buf);
2746  if (retval != ERROR_OK)
2747  LOG_DEBUG("failed: %i", retval);
2748 
2749  return retval;
2750 }
2751 
2753 {
2754  int retval;
2755  uint8_t value_buf[2];
2756  if (!target_was_examined(target)) {
2757  LOG_ERROR("Target not examined yet");
2758  return ERROR_FAIL;
2759  }
2760 
2761  LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2762  address,
2763  value);
2764 
2765  target_buffer_set_u16(target, value_buf, value);
2766  retval = target_write_phys_memory(target, address, 2, 1, value_buf);
2767  if (retval != ERROR_OK)
2768  LOG_DEBUG("failed: %i", retval);
2769 
2770  return retval;
2771 }
2772 
2774 {
2775  int retval;
2776  if (!target_was_examined(target)) {
2777  LOG_ERROR("Target not examined yet");
2778  return ERROR_FAIL;
2779  }
2780 
2781  LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2782  address, value);
2783 
2784  retval = target_write_phys_memory(target, address, 1, 1, &value);
2785  if (retval != ERROR_OK)
2786  LOG_DEBUG("failed: %i", retval);
2787 
2788  return retval;
2789 }
2790 
2791 static int find_target(struct command_invocation *cmd, const char *name)
2792 {
2793  struct target *target = get_target(name);
2794  if (!target) {
2795  command_print(cmd, "Target: %s is unknown, try one of:\n", name);
2796  return ERROR_FAIL;
2797  }
2798  if (!target->tap->enabled) {
2799  command_print(cmd, "Target: TAP %s is disabled, "
2800  "can't be the current target\n",
2801  target->tap->dotted_name);
2802  return ERROR_FAIL;
2803  }
2804 
2805  cmd->ctx->current_target = target;
2806  if (cmd->ctx->current_target_override)
2807  cmd->ctx->current_target_override = target;
2808 
2809  return ERROR_OK;
2810 }
2811 
2812 
2813 COMMAND_HANDLER(handle_targets_command)
2814 {
2815  int retval = ERROR_OK;
2816  if (CMD_ARGC == 1) {
2817  retval = find_target(CMD, CMD_ARGV[0]);
2818  if (retval == ERROR_OK) {
2819  /* we're done! */
2820  return retval;
2821  }
2822  }
2823 
2824  unsigned int index = 0;
2825  command_print(CMD, " TargetName Type Endian TapName State ");
2826  command_print(CMD, "-- ------------------ ---------- ------ ------------------ ------------");
2827  for (struct target *target = all_targets; target; target = target->next, ++index) {
2828  const char *state;
2829  char marker = ' ';
2830 
2831  if (target->tap->enabled)
2833  else
2834  state = "tap-disabled";
2835 
2836  if (CMD_CTX->current_target == target)
2837  marker = '*';
2838 
2839  /* keep columns lined up to match the headers above */
2841  "%2d%c %-18s %-10s %-6s %-18s %s",
2842  index,
2843  marker,
2848  state);
2849  }
2850 
2851  return retval;
2852 }
2853 
2854 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2855 
2856 static int power_dropout;
2857 static int srst_asserted;
2858 
2863 
2864 static int sense_handler(void)
2865 {
2866  static int prev_srst_asserted;
2867  static int prev_power_dropout;
2868 
2869  int retval = jtag_power_dropout(&power_dropout);
2870  if (retval != ERROR_OK)
2871  return retval;
2872 
2873  int power_restored;
2874  power_restored = prev_power_dropout && !power_dropout;
2875  if (power_restored)
2876  run_power_restore = 1;
2877 
2878  int64_t current = timeval_ms();
2879  static int64_t last_power;
2880  bool wait_more = last_power + 2000 > current;
2881  if (power_dropout && !wait_more) {
2882  run_power_dropout = 1;
2883  last_power = current;
2884  }
2885 
2886  retval = jtag_srst_asserted(&srst_asserted);
2887  if (retval != ERROR_OK)
2888  return retval;
2889 
2890  int srst_deasserted;
2891  srst_deasserted = prev_srst_asserted && !srst_asserted;
2892 
2893  static int64_t last_srst;
2894  wait_more = last_srst + 2000 > current;
2895  if (srst_deasserted && !wait_more) {
2896  run_srst_deasserted = 1;
2897  last_srst = current;
2898  }
2899 
2900  if (!prev_srst_asserted && srst_asserted)
2901  run_srst_asserted = 1;
2902 
2903  prev_srst_asserted = srst_asserted;
2904  prev_power_dropout = power_dropout;
2905 
2906  if (srst_deasserted || power_restored) {
2907  /* Other than logging the event we can't do anything here.
2908  * Issuing a reset is a particularly bad idea as we might
2909  * be inside a reset already.
2910  */
2911  }
2912 
2913  return ERROR_OK;
2914 }
2915 
2916 /* process target state changes */
2917 static int handle_target(void *priv)
2918 {
2919  Jim_Interp *interp = (Jim_Interp *)priv;
2920  int retval = ERROR_OK;
2921 
2922  if (!is_jtag_poll_safe()) {
2923  /* polling is disabled currently */
2924  return ERROR_OK;
2925  }
2926 
2927  /* we do not want to recurse here... */
2928  static int recursive;
2929  if (!recursive) {
2930  recursive = 1;
2931  sense_handler();
2932  /* danger! running these procedures can trigger srst assertions and power dropouts.
2933  * We need to avoid an infinite loop/recursion here and we do that by
2934  * clearing the flags after running these events.
2935  */
2936  int did_something = 0;
2937  if (run_srst_asserted) {
2938  LOG_INFO("srst asserted detected, running srst_asserted proc.");
2939  Jim_Eval(interp, "srst_asserted");
2940  did_something = 1;
2941  }
2942  if (run_srst_deasserted) {
2943  Jim_Eval(interp, "srst_deasserted");
2944  did_something = 1;
2945  }
2946  if (run_power_dropout) {
2947  LOG_INFO("Power dropout detected, running power_dropout proc.");
2948  Jim_Eval(interp, "power_dropout");
2949  did_something = 1;
2950  }
2951  if (run_power_restore) {
2952  Jim_Eval(interp, "power_restore");
2953  did_something = 1;
2954  }
2955 
2956  if (did_something) {
2957  /* clear detect flags */
2958  sense_handler();
2959  }
2960 
2961  /* clear action flags */
2962 
2963  run_srst_asserted = 0;
2964  run_srst_deasserted = 0;
2965  run_power_restore = 0;
2966  run_power_dropout = 0;
2967 
2968  recursive = 0;
2969  }
2970 
2971  /* Poll targets for state changes unless that's globally disabled.
2972  * Skip targets that are currently disabled.
2973  */
2974  for (struct target *target = all_targets;
2976  target = target->next) {
2977 
2979  continue;
2980 
2981  if (!target->tap->enabled)
2982  continue;
2983 
2984  if (target->backoff.times > target->backoff.count) {
2985  /* do not poll this time as we failed previously */
2986  target->backoff.count++;
2987  continue;
2988  }
2989  target->backoff.count = 0;
2990 
2991  /* only poll target if we've got power and srst isn't asserted */
2992  if (!power_dropout && !srst_asserted) {
2993  /* polling may fail silently until the target has been examined */
2994  retval = target_poll(target);
2995  if (retval != ERROR_OK) {
2996  /* 100ms polling interval. Increase interval between polling up to 5000ms */
2997  if (target->backoff.times * polling_interval < 5000) {
2998  target->backoff.times *= 2;
2999  target->backoff.times++;
3000  }
3001 
3002  /* Tell GDB to halt the debugger. This allows the user to
3003  * run monitor commands to handle the situation.
3004  */
3006  }
3007  if (target->backoff.times > 0) {
3008  LOG_TARGET_ERROR(target, "Polling failed, trying to reexamine");
3010  retval = target_examine_one(target);
3011  /* Target examination could have failed due to unstable connection,
3012  * but we set the examined flag anyway to repoll it later */
3013  if (retval != ERROR_OK) {
3015  LOG_TARGET_ERROR(target, "Examination failed, GDB will be halted. Polling again in %dms",
3017  return retval;
3018  }
3019  }
3020 
3021  /* Since we succeeded, we reset backoff count */
3022  target->backoff.times = 0;
3023  }
3024  }
3025 
3026  return retval;
3027 }
3028 
3029 COMMAND_HANDLER(handle_reg_command)
3030 {
3031  LOG_DEBUG("-");
3032 
3034  if (!target_was_examined(target)) {
3035  LOG_ERROR("Target not examined yet");
3037  }
3038  struct reg *reg = NULL;
3039 
3040  /* list all available registers for the current target */
3041  if (CMD_ARGC == 0) {
3042  struct reg_cache *cache = target->reg_cache;
3043 
3044  unsigned int count = 0;
3045  while (cache) {
3046  unsigned int i;
3047 
3048  command_print(CMD, "===== %s", cache->name);
3049 
3050  for (i = 0, reg = cache->reg_list;
3051  i < cache->num_regs;
3052  i++, reg++, count++) {
3053  if (!reg->exist || reg->hidden)
3054  continue;
3055  /* only print cached values if they are valid */
3056  if (reg->valid) {
3057  char *value = buf_to_hex_str(reg->value,
3058  reg->size);
3060  "(%i) %s (/%" PRIu32 "): 0x%s%s",
3061  count, reg->name,
3062  reg->size, value,
3063  reg->dirty
3064  ? " (dirty)"
3065  : "");
3066  free(value);
3067  } else {
3068  command_print(CMD, "(%i) %s (/%" PRIu32 ")",
3069  count, reg->name,
3070  reg->size);
3071  }
3072  }
3073  cache = cache->next;
3074  }
3075 
3076  return ERROR_OK;
3077  }
3078 
3079  /* access a single register by its ordinal number */
3080  if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
3081  unsigned int num;
3082  COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
3083 
3084  struct reg_cache *cache = target->reg_cache;
3085  unsigned int count = 0;
3086  while (cache) {
3087  unsigned int i;
3088  for (i = 0; i < cache->num_regs; i++) {
3089  if (count++ == num) {
3090  reg = &cache->reg_list[i];
3091  break;
3092  }
3093  }
3094  if (reg)
3095  break;
3096  cache = cache->next;
3097  }
3098 
3099  if (!reg) {
3100  command_print(CMD, "%i is out of bounds, the current target "
3101  "has only %i registers (0 - %i)", num, count, count - 1);
3102  return ERROR_FAIL;
3103  }
3104  } else {
3105  /* access a single register by its name */
3107 
3108  if (!reg)
3109  goto not_found;
3110  }
3111 
3112  assert(reg); /* give clang a hint that we *know* reg is != NULL here */
3113 
3114  if (!reg->exist)
3115  goto not_found;
3116 
3117  /* display a register */
3118  if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
3119  && (CMD_ARGV[1][0] <= '9')))) {
3120  if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
3121  reg->valid = false;
3122 
3123  if (!reg->valid) {
3124  int retval = reg->type->get(reg);
3125  if (retval != ERROR_OK) {
3126  LOG_ERROR("Could not read register '%s'", reg->name);
3127  return retval;
3128  }
3129  }
3130  char *value = buf_to_hex_str(reg->value, reg->size);
3131  command_print(CMD, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
3132  free(value);
3133  return ERROR_OK;
3134  }
3135 
3136  /* set register value */
3137  if (CMD_ARGC == 2) {
3138  uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
3139  if (!buf) {
3140  LOG_ERROR("Failed to allocate memory");
3141  return ERROR_FAIL;
3142  }
3143 
3144  int retval = CALL_COMMAND_HANDLER(command_parse_str_to_buf, CMD_ARGV[1], buf, reg->size);
3145  if (retval != ERROR_OK) {
3146  free(buf);
3147  return retval;
3148  }
3149 
3150  retval = reg->type->set(reg, buf);
3151  if (retval != ERROR_OK) {
3152  LOG_ERROR("Could not write to register '%s'", reg->name);
3153  } else {
3154  char *value = buf_to_hex_str(reg->value, reg->size);
3155  command_print(CMD, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
3156  free(value);
3157  }
3158 
3159  free(buf);
3160 
3161  return retval;
3162  }
3163 
3165 
3166 not_found:
3167  command_print(CMD, "register %s not found in current target", CMD_ARGV[0]);
3168  return ERROR_FAIL;
3169 }
3170 
3171 COMMAND_HANDLER(handle_poll_command)
3172 {
3173  int retval = ERROR_OK;
3175 
3176  if (CMD_ARGC == 0) {
3177  command_print(CMD, "background polling: %s",
3178  jtag_poll_get_enabled() ? "on" : "off");
3179  command_print(CMD, "TAP: %s (%s)",
3181  target->tap->enabled ? "enabled" : "disabled");
3182  if (!target->tap->enabled)
3183  return ERROR_OK;
3184  retval = target_poll(target);
3185  if (retval != ERROR_OK)
3186  return retval;
3187  retval = target_arch_state(target);
3188  if (retval != ERROR_OK)
3189  return retval;
3190  } else if (CMD_ARGC == 1) {
3191  bool enable;
3192  COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
3193  jtag_poll_set_enabled(enable);
3194  } else
3196 
3197  return retval;
3198 }
3199 
3200 COMMAND_HANDLER(handle_wait_halt_command)
3201 {
3202  if (CMD_ARGC > 1)
3204 
3205  unsigned int ms = DEFAULT_HALT_TIMEOUT;
3206  if (1 == CMD_ARGC) {
3207  int retval = parse_uint(CMD_ARGV[0], &ms);
3208  if (retval != ERROR_OK)
3210  }
3211 
3213  return target_wait_state(target, TARGET_HALTED, ms);
3214 }
3215 
3216 /* wait for target state to change. The trick here is to have a low
3217  * latency for short waits and not to suck up all the CPU time
3218  * on longer waits.
3219  *
3220  * After 500ms, keep_alive() is invoked
3221  */
3222 int target_wait_state(struct target *target, enum target_state state, unsigned int ms)
3223 {
3224  int retval;
3225  int64_t then = 0, cur;
3226  bool once = true;
3227 
3228  for (;;) {
3229  retval = target_poll(target);
3230  if (retval != ERROR_OK)
3231  return retval;
3232  if (target->state == state)
3233  break;
3234  cur = timeval_ms();
3235  if (once) {
3236  once = false;
3237  then = timeval_ms();
3238  LOG_DEBUG("waiting for target %s...",
3240  }
3241 
3242  if (cur - then > 500) {
3243  keep_alive();
3245  return ERROR_SERVER_INTERRUPTED;
3246  }
3247 
3248  if ((cur-then) > ms) {
3249  LOG_ERROR("timed out while waiting for target %s",
3251  return ERROR_FAIL;
3252  }
3253  }
3254 
3255  return ERROR_OK;
3256 }
3257 
3258 COMMAND_HANDLER(handle_halt_command)
3259 {
3260  LOG_DEBUG("-");
3261 
3263 
3264  target->verbose_halt_msg = true;
3265 
3266  int retval = target_halt(target);
3267  if (retval != ERROR_OK)
3268  return retval;
3269 
3270  if (CMD_ARGC == 1) {
3271  unsigned int wait_local;
3272  retval = parse_uint(CMD_ARGV[0], &wait_local);
3273  if (retval != ERROR_OK)
3275  if (!wait_local)
3276  return ERROR_OK;
3277  }
3278 
3279  return CALL_COMMAND_HANDLER(handle_wait_halt_command);
3280 }
3281 
3282 COMMAND_HANDLER(handle_soft_reset_halt_command)
3283 {
3285 
3286  LOG_TARGET_INFO(target, "requesting target halt and executing a soft reset");
3287 
3289 
3290  return ERROR_OK;
3291 }
3292 
3293 COMMAND_HANDLER(handle_reset_command)
3294 {
3295  if (CMD_ARGC > 1)
3297 
3298  enum target_reset_mode reset_mode = RESET_RUN;
3299  if (CMD_ARGC == 1) {
3300  const struct nvp *n;
3302  if ((!n->name) || (n->value == RESET_UNKNOWN))
3304  reset_mode = n->value;
3305  }
3306 
3307  /* reset *all* targets */
3308  return target_process_reset(CMD, reset_mode);
3309 }
3310 
3311 
3312 COMMAND_HANDLER(handle_resume_command)
3313 {
3314  bool current = true;
3315  if (CMD_ARGC > 1)
3317 
3319 
3320  /* with no CMD_ARGV, resume from current pc, addr = 0,
3321  * with one arguments, addr = CMD_ARGV[0],
3322  * handle breakpoints, not debugging */
3323  target_addr_t addr = 0;
3324  if (CMD_ARGC == 1) {
3326  current = false;
3327  }
3328 
3329  return target_resume(target, current, addr, true, false);
3330 }
3331 
3332 COMMAND_HANDLER(handle_step_command)
3333 {
3334  if (CMD_ARGC > 1)
3336 
3337  LOG_DEBUG("-");
3338 
3339  /* with no CMD_ARGV, step from current pc, addr = 0,
3340  * with one argument addr = CMD_ARGV[0],
3341  * handle breakpoints, debugging */
3342  target_addr_t addr = 0;
3343  int current_pc = 1;
3344  if (CMD_ARGC == 1) {
3346  current_pc = 0;
3347  }
3348 
3350 
3351  return target_step(target, current_pc, addr, true);
3352 }
3353 
3355  struct target *target, target_addr_t address, unsigned int size,
3356  unsigned int count, const uint8_t *buffer)
3357 {
3358  const unsigned int line_bytecnt = 32;
3359  unsigned int line_modulo = line_bytecnt / size;
3360 
3361  char output[line_bytecnt * 4 + 1];
3362  unsigned int output_len = 0;
3363 
3364  const char *value_fmt;
3365  switch (size) {
3366  case 8:
3367  value_fmt = "%16.16"PRIx64" ";
3368  break;
3369  case 4:
3370  value_fmt = "%8.8"PRIx64" ";
3371  break;
3372  case 2:
3373  value_fmt = "%4.4"PRIx64" ";
3374  break;
3375  case 1:
3376  value_fmt = "%2.2"PRIx64" ";
3377  break;
3378  default:
3379  /* "can't happen", caller checked */
3380  LOG_ERROR("invalid memory read size: %u", size);
3381  return;
3382  }
3383 
3384  for (unsigned int i = 0; i < count; i++) {
3385  if (i % line_modulo == 0) {
3386  output_len += snprintf(output + output_len,
3387  sizeof(output) - output_len,
3388  TARGET_ADDR_FMT ": ",
3389  (address + (i * size)));
3390  }
3391 
3392  uint64_t value = 0;
3393  const uint8_t *value_ptr = buffer + i * size;
3394  switch (size) {
3395  case 8:
3396  value = target_buffer_get_u64(target, value_ptr);
3397  break;
3398  case 4:
3399  value = target_buffer_get_u32(target, value_ptr);
3400  break;
3401  case 2:
3402  value = target_buffer_get_u16(target, value_ptr);
3403  break;
3404  case 1:
3405  value = *value_ptr;
3406  }
3407  output_len += snprintf(output + output_len,
3408  sizeof(output) - output_len,
3409  value_fmt, value);
3410 
3411  if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
3412  command_print(cmd, "%s", output);
3413  output_len = 0;
3414  }
3415  }
3416 }
3417 
3418 COMMAND_HANDLER(handle_md_command)
3419 {
3420  if (CMD_ARGC < 1)
3422 
3423  unsigned int size = 0;
3424  switch (CMD_NAME[2]) {
3425  case 'd':
3426  size = 8;
3427  break;
3428  case 'w':
3429  size = 4;
3430  break;
3431  case 'h':
3432  size = 2;
3433  break;
3434  case 'b':
3435  size = 1;
3436  break;
3437  default:
3439  }
3440 
3441  bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3442  int (*fn)(struct target *target,
3443  target_addr_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
3444  if (physical) {
3445  CMD_ARGC--;
3446  CMD_ARGV++;
3448  } else
3449  fn = target_read_memory;
3450  if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
3452 
3455 
3456  unsigned int count = 1;
3457  if (CMD_ARGC == 2)
3458  COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
3459 
3460  uint8_t *buffer = calloc(count, size);
3461  if (!buffer) {
3462  LOG_ERROR("Failed to allocate md read buffer");
3463  return ERROR_FAIL;
3464  }
3465 
3467  int retval = fn(target, address, size, count, buffer);
3468  if (retval == ERROR_OK)
3470 
3471  free(buffer);
3472 
3473  return retval;
3474 }
3475 
3476 typedef int (*target_write_fn)(struct target *target,
3477  target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
3478 
3479 static int target_fill_mem(struct target *target,
3481  target_write_fn fn,
3482  unsigned int data_size,
3483  /* value */
3484  uint64_t b,
3485  /* count */
3486  unsigned int c)
3487 {
3488  /* We have to write in reasonably large chunks to be able
3489  * to fill large memory areas with any sane speed */
3490  const unsigned int chunk_size = 16384;
3491  uint8_t *target_buf = malloc(chunk_size * data_size);
3492  if (!target_buf) {
3493  LOG_ERROR("Out of memory");
3494  return ERROR_FAIL;
3495  }
3496 
3497  for (unsigned int i = 0; i < chunk_size; i++) {
3498  switch (data_size) {
3499  case 8:
3500  target_buffer_set_u64(target, target_buf + i * data_size, b);
3501  break;
3502  case 4:
3503  target_buffer_set_u32(target, target_buf + i * data_size, b);
3504  break;
3505  case 2:
3506  target_buffer_set_u16(target, target_buf + i * data_size, b);
3507  break;
3508  case 1:
3509  target_buffer_set_u8(target, target_buf + i * data_size, b);
3510  break;
3511  default:
3512  exit(-1);
3513  }
3514  }
3515 
3516  int retval = ERROR_OK;
3517 
3518  for (unsigned int x = 0; x < c; x += chunk_size) {
3519  unsigned int current;
3520  current = c - x;
3521  if (current > chunk_size)
3522  current = chunk_size;
3523  retval = fn(target, address + x * data_size, data_size, current, target_buf);
3524  if (retval != ERROR_OK)
3525  break;
3526  /* avoid GDB timeouts */
3527  keep_alive();
3528 
3530  retval = ERROR_SERVER_INTERRUPTED;
3531  break;
3532  }
3533  }
3534  free(target_buf);
3535 
3536  return retval;
3537 }
3538 
3539 
3540 COMMAND_HANDLER(handle_mw_command)
3541 {
3542  if (CMD_ARGC < 2)
3544  bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3545  target_write_fn fn;
3546  if (physical) {
3547  CMD_ARGC--;
3548  CMD_ARGV++;
3550  } else
3551  fn = target_write_memory;
3552  if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
3554 
3557 
3558  uint64_t value;
3559  COMMAND_PARSE_NUMBER(u64, CMD_ARGV[1], value);
3560 
3561  unsigned int count = 1;
3562  if (CMD_ARGC == 3)
3563  COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
3564 
3566  unsigned int wordsize;
3567  switch (CMD_NAME[2]) {
3568  case 'd':
3569  wordsize = 8;
3570  break;
3571  case 'w':
3572  wordsize = 4;
3573  break;
3574  case 'h':
3575  wordsize = 2;
3576  break;
3577  case 'b':
3578  wordsize = 1;
3579  break;
3580  default:
3582  }
3583 
3584  return target_fill_mem(target, address, fn, wordsize, value, count);
3585 }
3586 
3587 static COMMAND_HELPER(parse_load_image_command, struct image *image,
3588  target_addr_t *min_address, target_addr_t *max_address)
3589 {
3590  if (CMD_ARGC < 1 || CMD_ARGC > 5)
3592 
3593  /* a base address isn't always necessary,
3594  * default to 0x0 (i.e. don't relocate) */
3595  if (CMD_ARGC >= 2) {
3598  image->base_address = addr;
3599  image->base_address_set = true;
3600  } else
3601  image->base_address_set = false;
3602 
3603  image->start_address_set = false;
3604 
3605  if (CMD_ARGC >= 4)
3606  COMMAND_PARSE_ADDRESS(CMD_ARGV[3], *min_address);
3607  if (CMD_ARGC == 5) {
3608  COMMAND_PARSE_ADDRESS(CMD_ARGV[4], *max_address);
3609  /* use size (given) to find max (required) */
3610  *max_address += *min_address;
3611  }
3612 
3613  if (*min_address > *max_address)
3615 
3616  return ERROR_OK;
3617 }
3618 
3619 COMMAND_HANDLER(handle_load_image_command)
3620 {
3621  uint8_t *buffer;
3622  size_t buf_cnt;
3623  uint32_t image_size;
3624  target_addr_t min_address = 0;
3625  target_addr_t max_address = -1;
3626  struct image image;
3627 
3628  int retval = CALL_COMMAND_HANDLER(parse_load_image_command,
3629  &image, &min_address, &max_address);
3630  if (retval != ERROR_OK)
3631  return retval;
3632 
3634 
3635  struct duration bench;
3636  duration_start(&bench);
3637 
3638  if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
3639  return ERROR_FAIL;
3640 
3641  image_size = 0x0;
3642  retval = ERROR_OK;
3643  for (unsigned int i = 0; i < image.num_sections; i++) {
3644  buffer = malloc(image.sections[i].size);
3645  if (!buffer) {
3647  "error allocating buffer for section (%d bytes)",
3648  (int)(image.sections[i].size));
3649  retval = ERROR_FAIL;
3650  break;
3651  }
3652 
3653  retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3654  if (retval != ERROR_OK) {
3655  free(buffer);
3656  break;
3657  }
3658 
3659  uint32_t offset = 0;
3660  uint32_t length = buf_cnt;
3661 
3662  /* DANGER!!! beware of unsigned comparison here!!! */
3663 
3664  if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3665  (image.sections[i].base_address < max_address)) {
3666 
3667  if (image.sections[i].base_address < min_address) {
3668  /* clip addresses below */
3669  offset += min_address-image.sections[i].base_address;
3670  length -= offset;
3671  }
3672 
3673  if (image.sections[i].base_address + buf_cnt > max_address)
3674  length -= (image.sections[i].base_address + buf_cnt)-max_address;
3675 
3676  retval = target_write_buffer(target,
3678  if (retval != ERROR_OK) {
3679  free(buffer);
3680  break;
3681  }
3682  image_size += length;
3683  command_print(CMD, "%u bytes written at address " TARGET_ADDR_FMT "",
3684  (unsigned int)length,
3686  }
3687 
3688  free(buffer);
3689  }
3690 
3691  if ((retval == ERROR_OK) && (duration_measure(&bench) == ERROR_OK)) {
3692  command_print(CMD, "downloaded %" PRIu32 " bytes "
3693  "in %fs (%0.3f KiB/s)", image_size,
3694  duration_elapsed(&bench), duration_kbps(&bench, image_size));
3695  }
3696 
3697  image_close(&image);
3698 
3699  return retval;
3700 
3701 }
3702 
3703 COMMAND_HANDLER(handle_dump_image_command)
3704 {
3705  struct fileio *fileio;
3706  uint8_t *buffer;
3707  int retval, retvaltemp;
3709  struct duration bench;
3711 
3712  if (CMD_ARGC != 3)
3714 
3717 
3718  uint32_t buf_size = (size > 4096) ? 4096 : size;
3719  buffer = malloc(buf_size);
3720  if (!buffer)
3721  return ERROR_FAIL;
3722 
3724  if (retval != ERROR_OK) {
3725  free(buffer);
3726  return retval;
3727  }
3728 
3729  duration_start(&bench);
3730 
3731  while (size > 0) {
3732  size_t size_written;
3733  uint32_t this_run_size = (size > buf_size) ? buf_size : size;
3734  retval = target_read_buffer(target, address, this_run_size, buffer);
3735  if (retval != ERROR_OK)
3736  break;
3737 
3738  retval = fileio_write(fileio, this_run_size, buffer, &size_written);
3739  if (retval != ERROR_OK)
3740  break;
3741 
3742  size -= this_run_size;
3743  address += this_run_size;
3744  }
3745 
3746  free(buffer);
3747 
3748  if ((retval == ERROR_OK) && (duration_measure(&bench) == ERROR_OK)) {
3749  size_t filesize;
3750  retval = fileio_size(fileio, &filesize);
3751  if (retval != ERROR_OK)
3752  return retval;
3754  "dumped %zu bytes in %fs (%0.3f KiB/s)", filesize,
3755  duration_elapsed(&bench), duration_kbps(&bench, filesize));
3756  }
3757 
3758  retvaltemp = fileio_close(fileio);
3759  if (retvaltemp != ERROR_OK)
3760  return retvaltemp;
3761 
3762  return retval;
3763 }
3764 
3769 };
3770 
3771 static COMMAND_HELPER(handle_verify_image_command_internal, enum verify_mode verify)
3772 {
3773  uint8_t *buffer;
3774  size_t buf_cnt;
3775  uint32_t image_size;
3776  int retval;
3777  uint32_t checksum = 0;
3778  uint32_t mem_checksum = 0;
3779 
3780  struct image image;
3781 
3783 
3784  if (CMD_ARGC < 1)
3786 
3787  if (!target) {
3788  LOG_ERROR("no target selected");
3789  return ERROR_FAIL;
3790  }
3791 
3792  struct duration bench;
3793  duration_start(&bench);
3794 
3795  if (CMD_ARGC >= 2) {
3799  image.base_address_set = true;
3800  } else {
3801  image.base_address_set = false;
3802  image.base_address = 0x0;
3803  }
3804 
3805  image.start_address_set = false;
3806 
3807  retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3808  if (retval != ERROR_OK)
3809  return retval;
3810 
3811  image_size = 0x0;
3812  int diffs = 0;
3813  retval = ERROR_OK;
3814  for (unsigned int i = 0; i < image.num_sections; i++) {
3815  buffer = malloc(image.sections[i].size);
3816  if (!buffer) {
3818  "error allocating buffer for section (%" PRIu32 " bytes)",
3819  image.sections[i].size);
3820  break;
3821  }
3822  retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3823  if (retval != ERROR_OK) {
3824  free(buffer);
3825  break;
3826  }
3827 
3828  if (verify >= IMAGE_VERIFY) {
3829  /* calculate checksum of image */
3830  retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3831  if (retval != ERROR_OK) {
3832  free(buffer);
3833  break;
3834  }
3835 
3836  retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3837  if (retval != ERROR_OK) {
3838  free(buffer);
3839  break;
3840  }
3841  if ((checksum != mem_checksum) && (verify == IMAGE_CHECKSUM_ONLY)) {
3842  LOG_ERROR("checksum mismatch");
3843  free(buffer);
3844  retval = ERROR_FAIL;
3845  goto done;
3846  }
3847  if (checksum != mem_checksum) {
3848  /* failed crc checksum, fall back to a binary compare */
3849  uint8_t *data;
3850 
3851  if (diffs == 0)
3852  LOG_ERROR("checksum mismatch - attempting binary compare");
3853 
3854  data = malloc(buf_cnt);
3855 
3856  retval = target_read_buffer(target, image.sections[i].base_address, buf_cnt, data);
3857  if (retval == ERROR_OK) {
3858  uint32_t t;
3859  for (t = 0; t < buf_cnt; t++) {
3860  if (data[t] != buffer[t]) {
3862  "diff %d address " TARGET_ADDR_FMT ". Was 0x%02" PRIx8 " instead of 0x%02" PRIx8,
3863  diffs,
3864  t + image.sections[i].base_address,
3865  data[t],
3866  buffer[t]);
3867  if (diffs++ >= 127) {
3868  command_print(CMD, "More than 128 errors, the rest are not printed.");
3869  free(data);
3870  free(buffer);
3871  goto done;
3872  }
3873  }
3874  keep_alive();
3876  retval = ERROR_SERVER_INTERRUPTED;
3877  free(data);
3878  free(buffer);
3879  goto done;
3880  }
3881  }
3882  }
3883  free(data);
3884  }
3885  } else {
3886  command_print(CMD, "address " TARGET_ADDR_FMT " length 0x%08zx",
3888  buf_cnt);
3889  }
3890 
3891  free(buffer);
3892  image_size += buf_cnt;
3893  }
3894  if (diffs > 0)
3895  command_print(CMD, "No more differences found.");
3896 done:
3897  if (diffs > 0)
3898  retval = ERROR_FAIL;
3899  if ((retval == ERROR_OK) && (duration_measure(&bench) == ERROR_OK)) {
3900  command_print(CMD, "verified %" PRIu32 " bytes "
3901  "in %fs (%0.3f KiB/s)", image_size,
3902  duration_elapsed(&bench), duration_kbps(&bench, image_size));
3903  }
3904 
3905  image_close(&image);
3906 
3907  return retval;
3908 }
3909 
3910 COMMAND_HANDLER(handle_verify_image_checksum_command)
3911 {
3912  return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_CHECKSUM_ONLY);
3913 }
3914 
3915 COMMAND_HANDLER(handle_verify_image_command)
3916 {
3917  return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_VERIFY);
3918 }
3919 
3920 COMMAND_HANDLER(handle_test_image_command)
3921 {
3922  return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_TEST);
3923 }
3924 
3926 {
3927  struct target *target = get_current_target(cmd->ctx);
3929  while (breakpoint) {
3930  if (breakpoint->type == BKPT_SOFT) {
3931  char *buf = buf_to_hex_str(breakpoint->orig_instr,
3932  breakpoint->length * 8);
3933  command_print(cmd, "Software breakpoint(IVA): addr=" TARGET_ADDR_FMT ", len=0x%x, orig_instr=0x%s",
3935  breakpoint->length,
3936  buf);
3937  free(buf);
3938  } else {
3939  if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3940  command_print(cmd, "Context breakpoint: asid=0x%8.8" PRIx32 ", len=0x%x, num=%u",
3941  breakpoint->asid,
3943  else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3944  command_print(cmd, "Hybrid breakpoint(IVA): addr=" TARGET_ADDR_FMT ", len=0x%x, num=%u",
3947  command_print(cmd, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3948  breakpoint->asid);
3949  } else
3950  command_print(cmd, "Hardware breakpoint(IVA): addr=" TARGET_ADDR_FMT ", len=0x%x, num=%u",
3953  }
3954 
3956  }
3957  return ERROR_OK;
3958 }
3959 
3961  target_addr_t addr, uint32_t asid, unsigned int length, int hw)
3962 {
3963  struct target *target = get_current_target(cmd->ctx);
3964  int retval;
3965 
3966  if (asid == 0) {
3967  retval = breakpoint_add(target, addr, length, hw);
3968  /* error is always logged in breakpoint_add(), do not print it again */
3969  if (retval == ERROR_OK)
3970  command_print(cmd, "breakpoint set at " TARGET_ADDR_FMT "", addr);
3971 
3972  } else if (addr == 0) {
3974  LOG_TARGET_ERROR(target, "Context breakpoint not available");
3976  }
3977  retval = context_breakpoint_add(target, asid, length, hw);
3978  /* error is always logged in context_breakpoint_add(), do not print it again */
3979  if (retval == ERROR_OK)
3980  command_print(cmd, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3981 
3982  } else {
3984  LOG_TARGET_ERROR(target, "Hybrid breakpoint not available");
3986  }
3987  retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3988  /* error is always logged in hybrid_breakpoint_add(), do not print it again */
3989  if (retval == ERROR_OK)
3990  command_print(cmd, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3991  }
3992  return retval;
3993 }
3994 
3995 COMMAND_HANDLER(handle_bp_command)
3996 {
3998  uint32_t asid;
3999  uint32_t length;
4000  int hw = BKPT_SOFT;
4001 
4002  switch (CMD_ARGC) {
4003  case 0:
4004  return handle_bp_command_list(CMD);
4005 
4006  case 2:
4007  asid = 0;
4010  return handle_bp_command_set(CMD, addr, asid, length, hw);
4011 
4012  case 3:
4013  if (strcmp(CMD_ARGV[2], "hw") == 0) {
4014  hw = BKPT_HARD;
4017  asid = 0;
4018  return handle_bp_command_set(CMD, addr, asid, length, hw);
4019  } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
4020  hw = BKPT_HARD;
4021  COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
4023  addr = 0;
4024  return handle_bp_command_set(CMD, addr, asid, length, hw);
4025  }
4026  /* fallthrough */
4027  case 4:
4028  hw = BKPT_HARD;
4030  COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
4032  return handle_bp_command_set(CMD, addr, asid, length, hw);
4033 
4034  default:
4036  }
4037 }
4038 
4039 COMMAND_HANDLER(handle_rbp_command)
4040 {
4041  int retval;
4042 
4043  if (CMD_ARGC != 1)
4045 
4047 
4048  if (!strcmp(CMD_ARGV[0], "all")) {
4049  retval = breakpoint_remove_all(target);
4050 
4051  if (retval != ERROR_OK) {
4052  command_print(CMD, "Error encountered during removal of all breakpoints.");
4053  command_print(CMD, "Some breakpoints may have remained set.");
4054  }
4055  } else {
4058 
4059  retval = breakpoint_remove(target, addr);
4060 
4061  if (retval != ERROR_OK)
4062  command_print(CMD, "Error during removal of breakpoint at address " TARGET_ADDR_FMT, addr);
4063  }
4064 
4065  return retval;
4066 }
4067 
4068 COMMAND_HANDLER(handle_wp_command)
4069 {
4071 
4072  if (CMD_ARGC == 0) {
4074 
4075  while (watchpoint) {
4076  char wp_type = (watchpoint->rw == WPT_READ ? 'r' : (watchpoint->rw == WPT_WRITE ? 'w' : 'a'));
4077  command_print(CMD, "address: " TARGET_ADDR_FMT
4078  ", len: 0x%8.8x"
4079  ", r/w/a: %c, value: 0x%8.8" PRIx64
4080  ", mask: 0x%8.8" PRIx64,
4082  watchpoint->length,
4083  wp_type,
4084  watchpoint->value,
4085  watchpoint->mask);
4087  }
4088  return ERROR_OK;
4089  }
4090 
4091  enum watchpoint_rw type = WPT_ACCESS;
4092  target_addr_t addr = 0;
4093  uint32_t length = 0;
4094  uint64_t data_value = 0x0;
4095  uint64_t data_mask = WATCHPOINT_IGNORE_DATA_VALUE_MASK;
4096  bool mask_specified = false;
4097 
4098  switch (CMD_ARGC) {
4099  case 5:
4100  COMMAND_PARSE_NUMBER(u64, CMD_ARGV[4], data_mask);
4101  mask_specified = true;
4102  /* fall through */
4103  case 4:
4104  COMMAND_PARSE_NUMBER(u64, CMD_ARGV[3], data_value);
4105  // if user specified only data value without mask - the mask should be 0
4106  if (!mask_specified)
4107  data_mask = 0;
4108  /* fall through */
4109  case 3:
4110  switch (CMD_ARGV[2][0]) {
4111  case 'r':
4112  type = WPT_READ;
4113  break;
4114  case 'w':
4115  type = WPT_WRITE;
4116  break;
4117  case 'a':
4118  type = WPT_ACCESS;
4119  break;
4120  default:
4121  LOG_TARGET_ERROR(target, "invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
4123  }
4124  /* fall through */
4125  case 2:
4128  break;
4129 
4130  default:
4132  }
4133 
4134  int retval = watchpoint_add(target, addr, length, type,
4135  data_value, data_mask);
4136  if (retval != ERROR_OK)
4137  LOG_TARGET_ERROR(target, "Failure setting watchpoints");
4138 
4139  return retval;
4140 }
4141 
4142 COMMAND_HANDLER(handle_rwp_command)
4143 {
4144  int retval;
4145 
4146  if (CMD_ARGC != 1)
4148 
4150  if (!strcmp(CMD_ARGV[0], "all")) {
4151  retval = watchpoint_remove_all(target);
4152 
4153  if (retval != ERROR_OK) {
4154  command_print(CMD, "Error encountered during removal of all watchpoints.");
4155  command_print(CMD, "Some watchpoints may have remained set.");
4156  }
4157  } else {
4160 
4161  retval = watchpoint_remove(target, addr);
4162 
4163  if (retval != ERROR_OK)
4164  command_print(CMD, "Error during removal of watchpoint at address " TARGET_ADDR_FMT, addr);
4165  }
4166 
4167  return retval;
4168 }
4169 
4176 COMMAND_HANDLER(handle_virt2phys_command)
4177 {
4178  if (CMD_ARGC != 1)
4180 
4181  target_addr_t va;
4183  target_addr_t pa;
4184 
4186  int retval = target->type->virt2phys(target, va, &pa);
4187  if (retval == ERROR_OK)
4188  command_print(CMD, "Physical address " TARGET_ADDR_FMT "", pa);
4189 
4190  return retval;
4191 }
4192 
4193 static void write_data(FILE *f, const void *data, size_t len)
4194 {
4195  size_t written = fwrite(data, 1, len, f);
4196  if (written != len)
4197  LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
4198 }
4199 
4200 static void write_long(FILE *f, int l, struct target *target)
4201 {
4202  uint8_t val[4];
4203 
4204  target_buffer_set_u32(target, val, l);
4205  write_data(f, val, 4);
4206 }
4207 
4208 static void write_string(FILE *f, char *s)
4209 {
4210  write_data(f, s, strlen(s));
4211 }
4212 
4213 typedef unsigned char UNIT[2]; /* unit of profiling */
4214 
4215 /* Dump a gmon.out histogram file. */
4216 static void write_gmon(uint32_t *samples, uint32_t sample_num, const char *filename, bool with_range,
4217  uint32_t start_address, uint32_t end_address, struct target *target, uint32_t duration_ms)
4218 {
4219  uint32_t i;
4220  FILE *f = fopen(filename, "wb");
4221  if (!f)
4222  return;
4223  write_string(f, "gmon");
4224  write_long(f, 0x00000001, target); /* Version */
4225  write_long(f, 0, target); /* padding */
4226  write_long(f, 0, target); /* padding */
4227  write_long(f, 0, target); /* padding */
4228 
4229  uint8_t zero = 0; /* GMON_TAG_TIME_HIST */
4230  write_data(f, &zero, 1);
4231 
4232  /* figure out bucket size */
4233  uint32_t min;
4234  uint32_t max;
4235  if (with_range) {
4236  min = start_address;
4237  max = end_address;
4238  } else {
4239  min = samples[0];
4240  max = samples[0];
4241  for (i = 0; i < sample_num; i++) {
4242  if (min > samples[i])
4243  min = samples[i];
4244  if (max < samples[i])
4245  max = samples[i];
4246  }
4247 
4248  /* max should be (largest sample + 1)
4249  * Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
4250  if (max < UINT32_MAX)
4251  max++;
4252 
4253  /* gprof requires (max - min) >= 2 */
4254  while ((max - min) < 2) {
4255  if (max < UINT32_MAX)
4256  max++;
4257  else
4258  min--;
4259  }
4260  }
4261 
4262  uint32_t address_space = max - min;
4263 
4264  /* FIXME: What is the reasonable number of buckets?
4265  * The profiling result will be more accurate if there are enough buckets. */
4266  static const uint32_t max_buckets = 128 * 1024; /* maximum buckets. */
4267  uint32_t num_buckets = address_space / sizeof(UNIT);
4268  if (num_buckets > max_buckets)
4269  num_buckets = max_buckets;
4270  int *buckets = malloc(sizeof(int) * num_buckets);
4271  if (!buckets) {
4272  fclose(f);
4273  return;
4274  }
4275  memset(buckets, 0, sizeof(int) * num_buckets);
4276  for (i = 0; i < sample_num; i++) {
4277  uint32_t address = samples[i];
4278 
4279  if ((address < min) || (max <= address))
4280  continue;
4281 
4282  long long a = address - min;
4283  long long b = num_buckets;
4284  long long c = address_space;
4285  int index_t = (a * b) / c; /* danger!!!! int32 overflows */
4286  buckets[index_t]++;
4287  }
4288 
4289  /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
4290  write_long(f, min, target); /* low_pc */
4291  write_long(f, max, target); /* high_pc */
4292  write_long(f, num_buckets, target); /* # of buckets */
4293  float sample_rate = sample_num / (duration_ms / 1000.0);
4294  write_long(f, sample_rate, target);
4295  write_string(f, "seconds");
4296  for (i = 0; i < (15-strlen("seconds")); i++)
4297  write_data(f, &zero, 1);
4298  write_string(f, "s");
4299 
4300  /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
4301 
4302  char *data = malloc(2 * num_buckets);
4303  if (data) {
4304  for (i = 0; i < num_buckets; i++) {
4305  int val;
4306  val = buckets[i];
4307  if (val > 65535)
4308  val = 65535;
4309  data[i * 2] = val&0xff;
4310  data[i * 2 + 1] = (val >> 8) & 0xff;
4311  }
4312  free(buckets);
4313  write_data(f, data, num_buckets * 2);
4314  free(data);
4315  } else
4316  free(buckets);
4317 
4318  fclose(f);
4319 }
4320 
4321 /* profiling samples the CPU PC as quickly as OpenOCD is able,
4322  * which will be used as a random sampling of PC */
4323 COMMAND_HANDLER(handle_profile_command)
4324 {
4326 
4327  if ((CMD_ARGC != 2) && (CMD_ARGC != 4))
4329 
4330  const uint32_t MAX_PROFILE_SAMPLE_NUM = 1000000;
4331  uint32_t offset;
4332  uint32_t num_of_samples;
4333  int retval = ERROR_OK;
4334  bool halted_before_profiling = target->state == TARGET_HALTED;
4335 
4337 
4338  uint32_t start_address = 0;
4339  uint32_t end_address = 0;
4340  bool with_range = false;
4341  if (CMD_ARGC == 4) {
4342  with_range = true;
4343  COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], start_address);
4344  COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], end_address);
4345  if (start_address > end_address || (end_address - start_address) < 2) {
4346  command_print(CMD, "Error: end - start < 2");
4348  }
4349  }
4350 
4351  uint32_t *samples = malloc(sizeof(uint32_t) * MAX_PROFILE_SAMPLE_NUM);
4352  if (!samples) {
4353  LOG_ERROR("No memory to store samples.");
4354  return ERROR_FAIL;
4355  }
4356 
4357  uint64_t timestart_ms = timeval_ms();
4363  retval = target_profiling(target, samples, MAX_PROFILE_SAMPLE_NUM,
4364  &num_of_samples, offset);
4365  if (retval != ERROR_OK) {
4366  free(samples);
4367  return retval;
4368  }
4369  uint32_t duration_ms = timeval_ms() - timestart_ms;
4370 
4371  assert(num_of_samples <= MAX_PROFILE_SAMPLE_NUM);
4372 
4373  retval = target_poll(target);
4374  if (retval != ERROR_OK) {
4375  free(samples);
4376  return retval;
4377  }
4378 
4379  if (target->state == TARGET_RUNNING && halted_before_profiling) {
4380  /* The target was halted before we started and is running now. Halt it,
4381  * for consistency. */
4382  retval = target_halt(target);
4383  if (retval != ERROR_OK) {
4384  free(samples);
4385  return retval;
4386  }
4387  } else if (target->state == TARGET_HALTED && !halted_before_profiling) {
4388  /* The target was running before we started and is halted now. Resume
4389  * it, for consistency. */
4390  retval = target_resume(target, true, 0, false, false);
4391  if (retval != ERROR_OK) {
4392  free(samples);
4393  return retval;
4394  }
4395  }
4396 
4397  retval = target_poll(target);
4398  if (retval != ERROR_OK) {
4399  free(samples);
4400  return retval;
4401  }
4402 
4403  write_gmon(samples, num_of_samples, CMD_ARGV[1],
4404  with_range, start_address, end_address, target, duration_ms);
4405  command_print(CMD, "Wrote %s", CMD_ARGV[1]);
4406 
4407  free(samples);
4408  return retval;
4409 }
4410 
4411 COMMAND_HANDLER(handle_target_read_memory)
4412 {
4413  /*
4414  * CMD_ARGV[0] = memory address
4415  * CMD_ARGV[1] = desired element width in bits
4416  * CMD_ARGV[2] = number of elements to read
4417  * CMD_ARGV[3] = optional "phys"
4418  */
4419 
4420  if (CMD_ARGC < 3 || CMD_ARGC > 4)
4422 
4423  /* Arg 1: Memory address. */
4426 
4427  /* Arg 2: Bit width of one element. */
4428  unsigned int width_bits;
4429  COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], width_bits);
4430 
4431  /* Arg 3: Number of elements to read. */
4432  unsigned int count;
4433  COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
4434 
4435  /* Arg 4: Optional 'phys'. */
4436  bool is_phys = false;
4437  if (CMD_ARGC == 4) {
4438  if (strcmp(CMD_ARGV[3], "phys")) {
4439  command_print(CMD, "invalid argument '%s', must be 'phys'", CMD_ARGV[3]);
4441  }
4442 
4443  is_phys = true;
4444  }
4445 
4446  switch (width_bits) {
4447  case 8:
4448  case 16:
4449  case 32:
4450  case 64:
4451  break;
4452  default:
4453  command_print(CMD, "invalid width, must be 8, 16, 32 or 64");
4455  }
4456 
4457  if (count > 65536) {
4458  command_print(CMD, "too large read request, exceeds 64K elements");
4460  }
4461 
4462  const unsigned int width = width_bits / 8;
4463  /* -1 is needed to handle cases when (addr + count * width) results in zero
4464  * due to overflow.
4465  */
4466  if ((addr + count * width - 1) < addr) {
4467  command_print(CMD, "memory region wraps over address zero");
4469  }
4470 
4472 
4473  const size_t buffersize = 4096;
4474  uint8_t *buffer = malloc(buffersize);
4475 
4476  if (!buffer) {
4477  LOG_ERROR("Failed to allocate memory");
4478  return ERROR_FAIL;
4479  }
4480 
4481  char *separator = "";
4482  while (count > 0) {
4483  const unsigned int max_chunk_len = buffersize / width;
4484  const size_t chunk_len = MIN(count, max_chunk_len);
4485 
4486  int retval;
4487 
4488  if (is_phys)
4489  retval = target_read_phys_memory(target, addr, width, chunk_len, buffer);
4490  else
4491  retval = target_read_memory(target, addr, width, chunk_len, buffer);
4492 
4493  if (retval != ERROR_OK) {
4494  LOG_DEBUG("read at " TARGET_ADDR_FMT " with width=%u and count=%zu failed",
4495  addr, width_bits, chunk_len);
4496  /*
4497  * FIXME: we append the errmsg to the list of value already read.
4498  * Add a way to flush and replace old output, but LOG_DEBUG() it
4499  */
4500  command_print(CMD, "failed to read memory");
4501  free(buffer);
4502  return retval;
4503  }
4504 
4505  for (size_t i = 0; i < chunk_len ; i++) {
4506  uint64_t v = 0;
4507 
4508  switch (width) {
4509  case 8:
4511  break;
4512  case 4:
4514  break;
4515  case 2:
4517  break;
4518  case 1:
4519  v = buffer[i];
4520  break;
4521  }
4522 
4523  command_print_sameline(CMD, "%s0x%" PRIx64, separator, v);
4524  separator = " ";
4525  }
4526 
4527  count -= chunk_len;
4528  addr += chunk_len * width;
4529  }
4530 
4531  free(buffer);
4532 
4533  return ERROR_OK;
4534 }
4535 
4536 COMMAND_HANDLER(handle_target_write_memory)
4537 {
4538  /*
4539  * CMD_ARGV[0] = memory address
4540  * CMD_ARGV[1] = desired element width in bits
4541  * CMD_ARGV[2] = list of data to write
4542  * CMD_ARGV[3] = optional "phys"
4543  */
4544 
4545  if (CMD_ARGC < 3 || CMD_ARGC > 4)
4547 
4548  /* Arg 1: Memory address. */
4551 
4552  /* Arg 2: Bit width of one element. */
4553  unsigned int width_bits;
4554  COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], width_bits);
4555 
4556  /* Arg 3: Elements to write. */
4557  size_t count = Jim_ListLength(CMD_CTX->interp, CMD_JIMTCL_ARGV[2]);
4558 
4559  /* Arg 4: Optional 'phys'. */
4560  bool is_phys = false;
4561 
4562  if (CMD_ARGC == 4) {
4563  if (strcmp(CMD_ARGV[3], "phys")) {
4564  command_print(CMD, "invalid argument '%s', must be 'phys'", CMD_ARGV[3]);
4566  }
4567 
4568  is_phys = true;
4569  }
4570 
4571  switch (width_bits) {
4572  case 8:
4573  case 16:
4574  case 32:
4575  case 64:
4576  break;
4577  default:
4578  command_print(CMD, "invalid width, must be 8, 16, 32 or 64");
4580  }
4581 
4582  if (count > 65536) {
4583  command_print(CMD, "too large memory write request, exceeds 64K elements");
4585  }
4586 
4587  const unsigned int width = width_bits / 8;
4588  /* -1 is needed to handle cases when (addr + count * width) results in zero
4589  * due to overflow.
4590  */
4591  if ((addr + count * width - 1) < addr) {
4592  command_print(CMD, "memory region wraps over address zero");
4594  }
4595 
4597 
4598  const size_t buffersize = 4096;
4599  uint8_t *buffer = malloc(buffersize);
4600 
4601  if (!buffer) {
4602  LOG_ERROR("Failed to allocate memory");
4603  return ERROR_FAIL;
4604  }
4605 
4606  size_t j = 0;
4607 
4608  while (count > 0) {
4609  const unsigned int max_chunk_len = buffersize / width;
4610  const size_t chunk_len = MIN(count, max_chunk_len);
4611 
4612  for (size_t i = 0; i < chunk_len; i++, j++) {
4613  Jim_Obj *tmp = Jim_ListGetIndex(CMD_CTX->interp, CMD_JIMTCL_ARGV[2], j);
4614  jim_wide element_wide;
4615  int jimretval = Jim_GetWide(CMD_CTX->interp, tmp, &element_wide);
4616  if (jimretval != JIM_OK) {
4617  command_print(CMD, "invalid value \"%s\"", Jim_GetString(tmp, NULL));
4618  free(buffer);
4620  }
4621 
4622  const uint64_t v = element_wide;
4623 
4624  switch (width) {
4625  case 8:
4627  break;
4628  case 4:
4630  break;
4631  case 2:
4633  break;
4634  case 1:
4635  buffer[i] = v & 0x0ff;
4636  break;
4637  }
4638  }
4639 
4640  count -= chunk_len;
4641 
4642  int retval;
4643 
4644  if (is_phys)
4645  retval = target_write_phys_memory(target, addr, width, chunk_len, buffer);
4646  else
4647  retval = target_write_memory(target, addr, width, chunk_len, buffer);
4648 
4649  if (retval != ERROR_OK) {
4650  LOG_DEBUG("write at " TARGET_ADDR_FMT " with width=%u and count=%zu failed",
4651  addr, width_bits, chunk_len);
4652  command_print(CMD, "failed to write memory");
4653  free(buffer);
4654  return retval;
4655  }
4656 
4657  addr += chunk_len * width;
4658  }
4659 
4660  free(buffer);
4661 
4662  return ERROR_OK;
4663 }
4664 
4665 /* FIX? should we propagate errors here rather than printing them
4666  * and continuing?
4667  */
4669 {
4670  struct target_event_action *teap;
4671  int retval;
4672 
4674  if (teap->event == e) {
4675  LOG_DEBUG("target: %s (%s) event: %d (%s) action: %s",
4678  e,
4679  target_event_name(e),
4680  Jim_GetString(teap->body, NULL));
4681 
4682  /* Override current target by the target an event
4683  * is issued from (lot of scripts need it).
4684  * Return back to previous override as soon
4685  * as the handler processing is done */
4686  struct command_context *cmd_ctx = current_command_context(teap->interp);
4687  struct target *saved_target_override = cmd_ctx->current_target_override;
4688  cmd_ctx->current_target_override = target;
4689 
4690  retval = Jim_EvalObj(teap->interp, teap->body);
4691 
4692  cmd_ctx->current_target_override = saved_target_override;
4693 
4694  if (retval == ERROR_COMMAND_CLOSE_CONNECTION)
4695  return;
4696 
4697  if (retval == JIM_RETURN)
4698  retval = teap->interp->returnCode;
4699 
4700  if (retval != JIM_OK) {
4701  Jim_MakeErrorMessage(teap->interp);
4702  LOG_TARGET_ERROR(target, "Execution of event %s failed:\n%s",
4703  target_event_name(e),
4704  Jim_GetString(Jim_GetResult(teap->interp), NULL));
4705  /* clean both error code and stacktrace before return */
4706  Jim_Eval(teap->interp, "error \"\" \"\"");
4707  }
4708  }
4709  }
4710 }
4711 
4712 COMMAND_HANDLER(handle_target_get_reg)
4713 {
4714  if (CMD_ARGC < 1 || CMD_ARGC > 2)
4716 
4717  bool force = false;
4718  Jim_Obj *next_argv = CMD_JIMTCL_ARGV[0];
4719 
4720  if (CMD_ARGC == 2) {
4721  if (strcmp(CMD_ARGV[0], "-force")) {
4722  command_print(CMD, "invalid argument '%s', must be '-force'", CMD_ARGV[0]);
4724  }
4725 
4726  force = true;
4727  next_argv = CMD_JIMTCL_ARGV[1];
4728  }
4729 
4730  const int length = Jim_ListLength(CMD_CTX->interp, next_argv);
4731 
4732  const struct target *target = get_current_target(CMD_CTX);
4733 
4734  for (int i = 0; i < length; i++) {
4735  Jim_Obj *elem = Jim_ListGetIndex(CMD_CTX->interp, next_argv, i);
4736 
4737  const char *reg_name = Jim_String(elem);
4738 
4739  struct reg *reg = register_get_by_name(target->reg_cache, reg_name, false);
4740 
4741  if (!reg || !reg->exist) {
4742  command_print(CMD, "unknown register '%s'", reg_name);
4744  }
4745 
4746  if (force || !reg->valid) {
4747  int retval = reg->type->get(reg);
4748 
4749  if (retval != ERROR_OK) {
4750  command_print(CMD, "failed to read register '%s'", reg_name);
4751  return retval;
4752  }
4753  }
4754 
4755  char *reg_value = buf_to_hex_str(reg->value, reg->size);
4756 
4757  if (!reg_value) {
4758  LOG_ERROR("Failed to allocate memory");
4759  return ERROR_FAIL;
4760  }
4761 
4762  command_print(CMD, "%s 0x%s", reg_name, reg_value);
4763 
4764  free(reg_value);
4765  }
4766 
4767  return ERROR_OK;
4768 }
4769 
4770 COMMAND_HANDLER(handle_set_reg_command)
4771 {
4772  if (CMD_ARGC != 1)
4774 
4775  int tmp;
4776 #if JIM_VERSION >= 80
4777  Jim_Obj **dict = Jim_DictPairs(CMD_CTX->interp, CMD_JIMTCL_ARGV[0], &tmp);
4778 
4779  if (!dict)
4780  return ERROR_FAIL;
4781 #else
4782  Jim_Obj **dict;
4783  int ret = Jim_DictPairs(CMD_CTX->interp, CMD_JIMTCL_ARGV[0], &dict, &tmp);
4784 
4785  if (ret != JIM_OK)
4786  return ERROR_FAIL;
4787 #endif
4788 
4789  const unsigned int length = tmp;
4790 
4791  const struct target *target = get_current_target(CMD_CTX);
4792  assert(target);
4793 
4794  for (unsigned int i = 0; i < length; i += 2) {
4795  const char *reg_name = Jim_String(dict[i]);
4796  const char *reg_value = Jim_String(dict[i + 1]);
4797  struct reg *reg = register_get_by_name(target->reg_cache, reg_name, false);
4798 
4799  if (!reg || !reg->exist) {
4800  command_print(CMD, "unknown register '%s'", reg_name);
4801  return ERROR_FAIL;
4802  }
4803 
4804  uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
4805  if (!buf) {
4806  LOG_ERROR("Failed to allocate memory");
4807  return ERROR_FAIL;
4808  }
4809 
4810  int retval = CALL_COMMAND_HANDLER(command_parse_str_to_buf, reg_value, buf, reg->size);
4811  if (retval != ERROR_OK) {
4812  free(buf);
4813  return retval;
4814  }
4815 
4816  retval = reg->type->set(reg, buf);
4817  free(buf);
4818 
4819  if (retval != ERROR_OK) {
4820  command_print(CMD, "failed to set '%s' to register '%s'",
4821  reg_value, reg_name);
4822  return retval;
4823  }
4824  }
4825 
4826  return ERROR_OK;
4827 }
4828 
4832 bool target_has_event_action(const struct target *target, enum target_event event)
4833 {
4834  struct target_event_action *teap;
4835 
4837  if (teap->event == event)
4838  return true;
4839  }
4840  return false;
4841 }
4842 
4858 };
4859 
4860 static struct nvp nvp_config_opts[] = {
4861  { .name = "-type", .value = TCFG_TYPE },
4862  { .name = "-event", .value = TCFG_EVENT },
4863  { .name = "-work-area-virt", .value = TCFG_WORK_AREA_VIRT },
4864  { .name = "-work-area-phys", .value = TCFG_WORK_AREA_PHYS },
4865  { .name = "-work-area-size", .value = TCFG_WORK_AREA_SIZE },
4866  { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
4867  { .name = "-endian", .value = TCFG_ENDIAN },
4868  { .name = "-coreid", .value = TCFG_COREID },
4869  { .name = "-chain-position", .value = TCFG_CHAIN_POSITION },
4870  { .name = "-dbgbase", .value = TCFG_DBGBASE },
4871  { .name = "-rtos", .value = TCFG_RTOS },
4872  { .name = "-defer-examine", .value = TCFG_DEFER_EXAMINE },
4873  { .name = "-gdb-port", .value = TCFG_GDB_PORT },
4874  { .name = "-gdb-max-connections", .value = TCFG_GDB_MAX_CONNECTIONS },
4875  { .name = NULL, .value = -1 }
4876 };
4877 
4878 static COMMAND_HELPER(target_configure, struct target *target, unsigned int index, bool is_configure)
4879 {
4880  const struct nvp *n;
4881  int retval;
4882 
4883  /* parse config or cget options ... */
4884  while (index < CMD_ARGC) {
4886  /* target defines a configure function */
4887  /* target gets first dibs on parameters */
4888  struct jim_getopt_info goi;
4889  jim_getopt_setup(&goi, CMD_CTX->interp, CMD_ARGC - index, CMD_JIMTCL_ARGV + index);
4890  goi.is_configure = is_configure;
4891  int e = (*target->type->target_jim_configure)(target, &goi);
4892  index = CMD_ARGC - goi.argc;
4893 
4894  int reslen;
4895  const char *result = Jim_GetString(Jim_GetResult(CMD_CTX->interp), &reslen);
4896  if (reslen > 0)
4897  command_print(CMD, "%s", result);
4898 
4899  if (e == JIM_OK) {
4900  /* more? */
4901  continue;
4902  }
4903  if (e == JIM_ERR) {
4904  /* An error */
4905  return ERROR_FAIL;
4906  }
4907  /* otherwise we 'continue' below */
4908  }
4910  if (!n->name) {
4913  }
4914  index++;
4915  switch (n->value) {
4916  case TCFG_TYPE:
4917  /* not settable */
4918  if (is_configure) {
4919  command_print(CMD, "not settable: %s", n->name);
4921  }
4922  if (index != CMD_ARGC)
4925  /* loop for more */
4926  break;
4927 
4928  case TCFG_EVENT:
4929  if (index == CMD_ARGC) {
4930  command_print(CMD, "expecting %s event-name event-body",
4931  CMD_ARGV[index - 1]);
4933  }
4934 
4936  if (!n->name) {
4939  }
4940  index++;
4941 
4942  if (is_configure) {
4943  if (index == CMD_ARGC) {
4944  command_print(CMD, "expecting %s %s event-body",
4945  CMD_ARGV[index - 2], CMD_ARGV[index - 1]);
4947  }
4948  }
4949 
4950  {
4951  struct target_event_action *teap;
4952 
4953  /* replace existing? */
4955  if (teap->event == (enum target_event)n->value)
4956  break;
4957 
4958  /* not found! */
4959  if (&teap->list == &target->events_action)
4960  teap = NULL;
4961 
4962  if (is_configure) {
4963  /* START_DEPRECATED_TPIU */
4964  if (n->value == TARGET_EVENT_TRACE_CONFIG)
4965  LOG_INFO("DEPRECATED target event %s; use TPIU events {pre,post}-{enable,disable}", n->name);
4966  /* END_DEPRECATED_TPIU */
4967 
4968  if (strlen(CMD_ARGV[index]) == 0) {
4969  /* empty action, drop existing one */
4970  if (teap) {
4971  list_del(&teap->list);
4972  Jim_DecrRefCount(teap->interp, teap->body);
4973  free(teap);
4974  }
4975  index++;
4976  break;
4977  }
4978 
4979  bool replace = true;
4980  if (!teap) {
4981  /* create new */
4982  teap = calloc(1, sizeof(*teap));
4983  replace = false;
4984  }
4985  teap->event = n->value;
4986  teap->interp = CMD_CTX->interp;
4987  if (teap->body)
4988  Jim_DecrRefCount(teap->interp, teap->body);
4989  /* use jim object to keep its reference on tcl file and line */
4990  /* TODO: need duplicate? isn't IncrRefCount enough? */
4991  teap->body = Jim_DuplicateObj(teap->interp, CMD_JIMTCL_ARGV[index++]);
4992  /*
4993  * FIXME:
4994  * Tcl/TK - "tk events" have a nice feature.
4995  * See the "BIND" command.
4996  * We should support that here.
4997  * You can specify %X and %Y in the event code.
4998  * The idea is: %T - target name.
4999  * The idea is: %N - target number
5000  * The idea is: %E - event name.
5001  */
5002  Jim_IncrRefCount(teap->body);
5003 
5004  if (!replace) {
5005  /* add to head of event list */
5006  list_add(&teap->list, &target->events_action);
5007  }
5008  } else {
5009  /* cget */
5010  if (index != CMD_ARGC)
5012 
5013  if (teap)
5014  command_print(CMD, "%s", Jim_GetString(teap->body, NULL));
5015  }
5016  }
5017  /* loop for more */
5018  break;
5019 
5020  case TCFG_WORK_AREA_VIRT:
5021  if (is_configure) {
5022  if (index == CMD_ARGC) {
5023  command_print(CMD, "missing argument to %s", CMD_ARGV[index - 1]);
5025  }
5027  index++;
5030  } else {
5031  if (index != CMD_ARGC)
5034  }
5035  /* loop for more */
5036  break;
5037 
5038  case TCFG_WORK_AREA_PHYS:
5039  if (is_configure) {
5040  if (index == CMD_ARGC) {
5041  command_print(CMD, "missing argument to %s", CMD_ARGV[index - 1]);
5043  }
5045  index++;
5048  } else {
5049  if (index != CMD_ARGC)
5052  }
5053  /* loop for more */
5054  break;
5055 
5056  case TCFG_WORK_AREA_SIZE:
5057  if (is_configure) {
5058  if (index == CMD_ARGC) {
5059  command_print(CMD, "missing argument to %s", CMD_ARGV[index - 1]);
5061  }
5063  index++;
5065  } else {
5066  if (index != CMD_ARGC)
5068  command_print(CMD, "0x%08" PRIx32, target->working_area_size);
5069  }
5070  /* loop for more */
5071  break;
5072 
5073  case TCFG_WORK_AREA_BACKUP:
5074  if (is_configure) {
5075  if (index == CMD_ARGC) {
5076  command_print(CMD, "missing argument to %s", CMD_ARGV[index - 1]);
5078  }
5080  if (retval != ERROR_OK)
5081  return retval;
5082  index++;
5084  } else {
5085  if (index != CMD_ARGC)
5088  }
5089  /* loop for more */
5090  break;
5091 
5092  case TCFG_ENDIAN:
5093  if (is_configure) {
5094  if (index == CMD_ARGC) {
5095  command_print(CMD, "missing argument to %s", CMD_ARGV[index - 1]);
5097  }
5099  if (!n->name) {
5102  }
5103  index++;
5104  target->endianness = n->value;
5105  } else {
5106  if (index != CMD_ARGC)
5109  if (!n->name) {
5112  }
5113  command_print(CMD, "%s", n->name);
5114  }
5115  /* loop for more */
5116  break;
5117 
5118  case TCFG_COREID:
5119  if (is_configure) {
5120  if (index == CMD_ARGC) {
5121  command_print(CMD, "missing argument to %s", CMD_ARGV[index - 1]);
5123  }
5124  COMMAND_PARSE_NUMBER(s32, CMD_ARGV[index], target->coreid);
5125  index++;
5126  } else {
5127  if (index != CMD_ARGC)
5129  command_print(CMD, "%" PRIi32, target->coreid);
5130  }
5131  /* loop for more */
5132  break;
5133 
5134  case TCFG_CHAIN_POSITION:
5135  if (is_configure) {
5136  if (target->has_dap) {
5137  command_print(CMD, "target requires -dap parameter instead of -chain-position!");
5139  }
5140 
5141  if (index == CMD_ARGC) {
5142  command_print(CMD, "missing argument to %s", CMD_ARGV[index - 1]);
5144  }
5145  struct jtag_tap *tap = jtag_tap_by_string(CMD_ARGV[index]);
5146  if (!tap) {
5147  command_print(CMD, "Tap '%s' could not be found", CMD_ARGV[index]);
5149  }
5150  index++;
5151  target->tap = tap;
5152  target->tap_configured = true;
5153  } else {
5154  if (index != CMD_ARGC)
5157  }
5158  /* loop for more */
5159  break;
5160 
5161  case TCFG_DBGBASE:
5162  if (is_configure) {
5163  if (index == CMD_ARGC) {
5164  command_print(CMD, "missing argument to %s", CMD_ARGV[index - 1]);
5166  }
5168  index++;
5169  target->dbgbase_set = true;
5170  } else {
5171  if (index != CMD_ARGC)
5173  command_print(CMD, "0x%08" PRIx32, target->dbgbase);
5174  }
5175  /* loop for more */
5176  break;
5177 
5178  case TCFG_RTOS:
5179  if (is_configure) {
5180  if (index == CMD_ARGC) {
5181  command_print(CMD, "missing argument to %s", CMD_ARGV[index - 1]);
5183  }
5184  retval = rtos_create(CMD, target, CMD_ARGV[index]);
5185  if (retval != ERROR_OK)
5186  return retval;
5187  index++;
5188  } else {
5189  if (index != CMD_ARGC)
5191  if (target->rtos)
5192  command_print(CMD, "%s", target->rtos->type->name);
5193  }
5194  /* loop for more */
5195  break;
5196 
5197  case TCFG_DEFER_EXAMINE:
5198  if (is_configure)
5199  target->defer_examine = true;
5200  else
5201  command_print(CMD, "%s", target->defer_examine ? "true" : "false");
5202  /* loop for more */
5203  break;
5204 
5205  case TCFG_GDB_PORT:
5206  if (is_configure) {
5207  if (index == CMD_ARGC) {
5208  command_print(CMD, "missing argument to %s", CMD_ARGV[index - 1]);
5210  }
5211 
5212  /* TODO: generalize test of COMMAND_CONFIG */
5213  if (CMD_CTX->mode != COMMAND_CONFIG) {
5214  command_print(CMD, "-gdb-port must be configured before 'init'");
5216  }
5217 
5218  char *s = strdup(CMD_ARGV[index]);
5219  if (!s) {
5220  LOG_ERROR("Out of memory");
5221  return ERROR_FAIL;
5222  }
5223  free(target->gdb_port_override);
5225  index++;
5226  } else {
5227  if (index != CMD_ARGC)
5230  }
5231  /* loop for more */
5232  break;
5233 
5235  if (is_configure) {
5236  if (index == CMD_ARGC) {
5237  command_print(CMD, "missing argument to %s", CMD_ARGV[index - 1]);
5239  }
5240 
5241  if (CMD_CTX->mode != COMMAND_CONFIG) {
5242  command_print(CMD, "-gdb-max-connections must be configured before 'init'");
5244  }
5245 
5247  index++;
5248  if (target->gdb_max_connections < 0)
5250  } else {
5251  if (index != CMD_ARGC)
5254  }
5255  /* loop for more */
5256  break;
5257  }
5258  }
5259 
5260  return ERROR_OK;
5261 }
5262 
5263 COMMAND_HANDLER(handle_target_configure)
5264 {
5265  if (!CMD_ARGC)
5267 
5268  bool is_configure = !strcmp(CMD_NAME, "configure");
5269 
5271 
5272  return CALL_COMMAND_HANDLER(target_configure, target, 0, is_configure);
5273 }
5274 
5275 COMMAND_HANDLER(handle_target_examine)
5276 {
5277  bool allow_defer = false;
5278 
5279  if (CMD_ARGC > 1)
5281 
5282  if (CMD_ARGC == 1) {
5283  if (strcmp(CMD_ARGV[0], "allow-defer"))
5285  allow_defer = true;
5286  }
5287 
5289  if (!target->tap->enabled) {
5290  command_print(CMD, "[TAP is disabled]");
5291  return ERROR_FAIL;
5292  }
5293 
5294  if (allow_defer && target->defer_examine) {
5295  LOG_INFO("Deferring arp_examine of %s", target_name(target));
5296  LOG_INFO("Use arp_examine command to examine it manually!");
5297  return ERROR_OK;
5298  }
5299 
5300  int retval = target->type->examine(target);
5301  if (retval != ERROR_OK) {
5303  return retval;
5304  }
5305 
5307 
5308  return ERROR_OK;
5309 }
5310 
5311 COMMAND_HANDLER(handle_target_was_examined)
5312 {
5313  if (CMD_ARGC != 0)
5315 
5317 
5318  command_print(CMD, "%d", target_was_examined(target) ? 1 : 0);
5319 
5320  return ERROR_OK;
5321 }
5322 
5323 COMMAND_HANDLER(handle_target_examine_deferred)
5324 {
5325  if (CMD_ARGC != 0)
5327 
5329 
5330  command_print(CMD, "%d", target->defer_examine ? 1 : 0);
5331 
5332  return ERROR_OK;
5333 }
5334 
5335 COMMAND_HANDLER(handle_target_halt_gdb)
5336 {
5337  if (CMD_ARGC != 0)
5339 
5341 
5343 }
5344 
5345 COMMAND_HANDLER(handle_target_poll)
5346 {
5347  if (CMD_ARGC != 0)
5349 
5351  if (!target->tap->enabled) {
5352  command_print(CMD, "[TAP is disabled]");
5353  return ERROR_FAIL;
5354  }
5355 
5356  if (!(target_was_examined(target)))
5358 
5359  return target->type->poll(target);
5360 }
5361 
5362 COMMAND_HANDLER(handle_target_reset)
5363 {
5364  if (CMD_ARGC != 2)
5366 
5367  const struct nvp *n = nvp_name2value(nvp_assert, CMD_ARGV[0]);
5368  if (!n->name) {
5371  }
5372 
5373  /* the halt or not param */
5374  int a;
5375  COMMAND_PARSE_NUMBER(int, CMD_ARGV[1], a);
5376 
5378  if (!target->tap->enabled) {
5379  command_print(CMD, "[TAP is disabled]");
5380  return ERROR_FAIL;
5381  }
5382 
5384  command_print(CMD, "No target-specific reset for %s", target_name(target));
5385  return ERROR_FAIL;
5386  }
5387 
5388  /* determine if we should halt or not. */
5389  target->reset_halt = (a != 0);
5390  /* When this happens - all workareas are invalid. */
5392 
5393  /* do the assert */
5394  if (n->value == NVP_ASSERT) {
5395  int retval = target->type->assert_reset(target);
5396  if (target->defer_examine)
5398  return retval;
5399  }
5400 
5401  return target->type->deassert_reset(target);
5402 }
5403 
5404 COMMAND_HANDLER(handle_target_halt)
5405 {
5406  if (CMD_ARGC != 0)
5408 
5410  if (!target->tap->enabled) {
5411  command_print(CMD, "[TAP is disabled]");
5412  return ERROR_FAIL;
5413  }
5414 
5415  return target->type->halt(target);
5416 }
5417 
5418 COMMAND_HANDLER(handle_target_wait_state)
5419 {
5420  if (CMD_ARGC != 2)
5422 
5423  const struct nvp *n = nvp_name2value(nvp_target_state, CMD_ARGV[0]);
5424  if (!n->name) {
5427  }
5428 
5429  unsigned int a;
5430  COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], a);
5431 
5433  if (!target->tap->enabled) {
5434  command_print(CMD, "[TAP is disabled]");
5435  return ERROR_FAIL;
5436  }
5437 
5438  int retval = target_wait_state(target, n->value, a);
5439  if (retval != ERROR_OK) {
5441  "target: %s wait %s fails (%d) %s",
5442  target_name(target), n->name,
5443  retval, target_strerror_safe(retval));
5444  return retval;
5445  }
5446  return ERROR_OK;
5447 }
5448 /* List for human, Events defined for this target.
5449  * scripts/programs should use 'name cget -event NAME'
5450  */
5451 COMMAND_HANDLER(handle_target_event_list)
5452 {
5454  struct target_event_action *teap;
5455 
5456  command_print(CMD, "Event actions for target %s\n",
5457  target_name(target));
5458  command_print(CMD, "%-25s | Body", "Event");
5459  command_print(CMD, "------------------------- | "
5460  "----------------------------------------");
5461 
5463  command_print(CMD, "%-25s | %s",
5464  target_event_name(teap->event),
5465  Jim_GetString(teap->body, NULL));
5466 
5467  command_print(CMD, "***END***");
5468  return ERROR_OK;
5469 }
5470 
5471 COMMAND_HANDLER(handle_target_current_state)
5472 {
5473  if (CMD_ARGC != 0)
5475 
5477 
5479 
5480  return ERROR_OK;
5481 }
5482 
5483 COMMAND_HANDLER(handle_target_debug_reason)
5484 {
5485  if (CMD_ARGC != 0)
5487 
5489 
5490 
5493 
5494  if (!debug_reason) {
5495  command_print(CMD, "bug: invalid debug reason (%d)",
5496  target->debug_reason);
5497  return ERROR_FAIL;
5498  }
5499 
5500  command_print(CMD, "%s", debug_reason);
5501 
5502  return ERROR_OK;
5503 }
5504 
5505 COMMAND_HANDLER(handle_target_invoke_event)
5506 {
5507  if (CMD_ARGC != 1)
5509 
5510  const struct nvp *n = nvp_name2value(nvp_target_event, CMD_ARGV[0]);
5511  if (!n->name) {
5514  }
5515 
5518  return ERROR_OK;
5519 }
5520 
5522  {
5523  .name = "configure",
5524  .mode = COMMAND_ANY,
5525  .handler = handle_target_configure,
5526  .help = "configure a new target for use",
5527  .usage = "[target_attribute ...]",
5528  },
5529  {
5530  .name = "cget",
5531  .mode = COMMAND_ANY,
5532  .handler = handle_target_configure,
5533  .help = "returns the specified target attribute",
5534  .usage = "target_attribute",
5535  },
5536  {
5537  .name = "mwd",
5538  .handler = handle_mw_command,
5539  .mode = COMMAND_EXEC,
5540  .help = "Write 64-bit word(s) to target memory",
5541  .usage = "address data [count]",
5542  },
5543  {
5544  .name = "mww",
5545  .handler = handle_mw_command,
5546  .mode = COMMAND_EXEC,
5547  .help = "Write 32-bit word(s) to target memory",
5548  .usage = "address data [count]",
5549  },
5550  {
5551  .name = "mwh",
5552  .handler = handle_mw_command,
5553  .mode = COMMAND_EXEC,
5554  .help = "Write 16-bit half-word(s) to target memory",
5555  .usage = "address data [count]",
5556  },
5557  {
5558  .name = "mwb",
5559  .handler = handle_mw_command,
5560  .mode = COMMAND_EXEC,
5561  .help = "Write byte(s) to target memory",
5562  .usage = "address data [count]",
5563  },
5564  {
5565  .name = "mdd",
5566  .handler = handle_md_command,
5567  .mode = COMMAND_EXEC,
5568  .help = "Display target memory as 64-bit words",
5569  .usage = "address [count]",
5570  },
5571  {
5572  .name = "mdw",
5573  .handler = handle_md_command,
5574  .mode = COMMAND_EXEC,
5575  .help = "Display target memory as 32-bit words",
5576  .usage = "address [count]",
5577  },
5578  {
5579  .name = "mdh",
5580  .handler = handle_md_command,
5581  .mode = COMMAND_EXEC,
5582  .help = "Display target memory as 16-bit half-words",
5583  .usage = "address [count]",
5584  },
5585  {
5586  .name = "mdb",
5587  .handler = handle_md_command,
5588  .mode = COMMAND_EXEC,
5589  .help = "Display target memory as 8-bit bytes",
5590  .usage = "address [count]",
5591  },
5592  {
5593  .name = "get_reg",
5594  .mode = COMMAND_EXEC,
5595  .handler = handle_target_get_reg,
5596  .help = "Get register values from the target",
5597  .usage = "[-force] list",
5598  },
5599  {
5600  .name = "set_reg",
5601  .mode = COMMAND_EXEC,
5602  .handler = handle_set_reg_command,
5603  .help = "Set target register values",
5604  .usage = "dict",
5605  },
5606  {
5607  .name = "read_memory",
5608  .mode = COMMAND_EXEC,
5609  .handler = handle_target_read_memory,
5610  .help = "Read Tcl list of 8/16/32/64 bit numbers from target memory",
5611  .usage = "address width count ['phys']",
5612  },
5613  {
5614  .name = "write_memory",
5615  .mode = COMMAND_EXEC,
5616  .handler = handle_target_write_memory,
5617  .help = "Write Tcl list of 8/16/32/64 bit numbers to target memory",
5618  .usage = "address width data ['phys']",
5619  },
5620  {
5621  .name = "eventlist",
5622  .handler = handle_target_event_list,
5623  .mode = COMMAND_EXEC,
5624  .help = "displays a table of events defined for this target",
5625  .usage = "",
5626  },
5627  {
5628  .name = "curstate",
5629  .mode = COMMAND_EXEC,
5630  .handler = handle_target_current_state,
5631  .help = "displays the current state of this target",
5632  .usage = "",
5633  },
5634  {
5635  .name = "debug_reason",
5636  .mode = COMMAND_EXEC,
5637  .handler = handle_target_debug_reason,
5638  .help = "displays the debug reason of this target",
5639  .usage = "",
5640  },
5641  {
5642  .name = "arp_examine",
5643  .mode = COMMAND_EXEC,
5644  .handler = handle_target_examine,
5645  .help = "used internally for reset processing",
5646  .usage = "['allow-defer']",
5647  },
5648  {
5649  .name = "was_examined",
5650  .mode = COMMAND_EXEC,
5651  .handler = handle_target_was_examined,
5652  .help = "used internally for reset processing",
5653  .usage = "",
5654  },
5655  {
5656  .name = "examine_deferred",
5657  .mode = COMMAND_EXEC,
5658  .handler = handle_target_examine_deferred,
5659  .help = "used internally for reset processing",
5660  .usage = "",
5661  },
5662  {
5663  .name = "arp_halt_gdb",
5664  .mode = COMMAND_EXEC,
5665  .handler = handle_target_halt_gdb,
5666  .help = "used internally for reset processing to halt GDB",
5667  .usage = "",
5668  },
5669  {
5670  .name = "arp_poll",
5671  .mode = COMMAND_EXEC,
5672  .handler = handle_target_poll,
5673  .help = "used internally for reset processing",
5674  .usage = "",
5675  },
5676  {
5677  .name = "arp_reset",
5678  .mode = COMMAND_EXEC,
5679  .handler = handle_target_reset,
5680  .help = "used internally for reset processing",
5681  .usage = "'assert'|'deassert' halt",
5682  },
5683  {
5684  .name = "arp_halt",
5685  .mode = COMMAND_EXEC,
5686  .handler = handle_target_halt,
5687  .help = "used internally for reset processing",
5688  .usage = "",
5689  },
5690  {
5691  .name = "arp_waitstate",
5692  .mode = COMMAND_EXEC,
5693  .handler = handle_target_wait_state,
5694  .help = "used internally for reset processing",
5695  .usage = "statename timeoutmsecs",
5696  },
5697  {
5698  .name = "invoke-event",
5699  .mode = COMMAND_EXEC,
5700  .handler = handle_target_invoke_event,
5701  .help = "invoke handler for specified event",
5702  .usage = "event_name",
5703  },
5705 };
5706 
5707 COMMAND_HANDLER(handle_target_create)
5708 {
5709  int retval = ERROR_OK;
5710  int x;
5711 
5712  if (CMD_ARGC < 2)
5714 
5715  /* check if the target name clashes with an existing command name */
5716  Jim_Cmd *jimcmd = Jim_GetCommand(CMD_CTX->interp, CMD_JIMTCL_ARGV[0], JIM_NONE);
5717  if (jimcmd) {
5718  command_print(CMD, "Command/target: %s Exists", CMD_ARGV[0]);
5719  return ERROR_FAIL;
5720  }
5721 
5722  /* TYPE */
5723  const char *cp = CMD_ARGV[1];
5724  struct transport *tr = get_current_transport();
5725  if (tr && tr->override_target) {
5726  retval = tr->override_target(&cp);
5727  if (retval != ERROR_OK) {
5728  command_print(CMD, "The selected transport doesn't support this target");
5729  return retval;
5730  }
5731  LOG_INFO("The selected transport took over low-level target control. The results might differ compared to plain JTAG/SWD");
5732  }
5733  /* now does target type exist */
5734  for (x = 0 ; target_types[x] ; x++) {
5735  if (strcmp(cp, target_types[x]->name) == 0) {
5736  /* found */
5737  break;
5738  }
5739  }
5740  if (!target_types[x]) {
5741  char *all = NULL;
5742  for (x = 0 ; target_types[x] ; x++) {
5743  char *prev = all;
5744  if (all)
5745  all = alloc_printf("%s, %s", all, target_types[x]->name);
5746  else
5747  all = alloc_printf("%s", target_types[x]->name);
5748  free(prev);
5749  if (!all) {
5750  LOG_ERROR("Out of memory");
5751  return ERROR_FAIL;
5752  }
5753  }
5754  command_print(CMD, "Unknown target type %s, try one of %s", cp, all);
5755  free(all);
5756  return ERROR_FAIL;
5757  }
5758 
5759  /* Create it */
5760  struct target *target = calloc(1, sizeof(struct target));
5761  if (!target) {
5762  LOG_ERROR("Out of memory");
5763  return ERROR_FAIL;
5764  }
5765 
5766  /* set empty smp cluster */
5767  target->smp_targets = &empty_smp_targets;
5768 
5769  /* allocate memory for each unique target type */
5770  target->type = malloc(sizeof(struct target_type));
5771  if (!target->type) {
5772  LOG_ERROR("Out of memory");
5773  free(target);
5774  return ERROR_FAIL;
5775  }
5776 
5777  memcpy(target->type, target_types[x], sizeof(struct target_type));
5778 
5779  /* default to first core, override with -coreid */
5780  target->coreid = 0;
5781 
5782  target->working_area = 0x0;
5783  target->working_area_size = 0x0;
5785  target->backup_working_area = false;
5786 
5789  target->reg_cache = NULL;
5790  target->breakpoints = NULL;
5791  target->watchpoints = NULL;
5792  target->next = NULL;
5793  target->arch_info = NULL;
5794 
5795  target->verbose_halt_msg = true;
5796 
5797  target->halt_issued = false;
5798 
5800 
5801  /* initialize trace information */
5802  target->trace_info = calloc(1, sizeof(struct trace));
5803  if (!target->trace_info) {
5804  LOG_ERROR("Out of memory");
5805  free(target->type);
5806  free(target);
5807  return ERROR_FAIL;
5808  }
5809 
5810  target->dbgmsg = NULL;
5811  target->dbg_msg_enabled = false;
5812 
5814 
5815  target->rtos = NULL;
5816  target->rtos_auto_detect = false;
5817 
5820 
5821  target->cmd_name = strdup(CMD_ARGV[0]);
5822  if (!target->cmd_name) {
5823  LOG_ERROR("Out of memory");
5824  free(target->trace_info);
5825  free(target->type);
5826  free(target);
5827  return ERROR_FAIL;
5828  }
5829 
5830  /* Do the rest as "configure" options */
5831  bool is_configure = true;
5832  retval = CALL_COMMAND_HANDLER(target_configure, target, 2, is_configure);
5833  if (retval == ERROR_OK) {
5834  if (target->has_dap) {
5835  if (!target->dap_configured) {
5836  command_print(CMD, "-dap ?name? required when creating target");
5838  }
5839  } else {
5840  if (!target->tap_configured) {
5841  command_print(CMD, "-chain-position ?name? required when creating target");
5843  }
5844  }
5845  /* tap must be set after target was configured */
5846  if (!target->tap)
5848  }
5849 
5850  if (retval != ERROR_OK) {
5852  free(target->gdb_port_override);
5853  free(target->trace_info);
5854  free(target->type);
5855  free(target->private_config);
5856  free(target);
5857  return retval;
5858  }
5859 
5861  /* default endian to little if not specified */
5863  }
5864 
5865  if (target->type->target_create) {
5866  retval = (*target->type->target_create)(target);
5867  if (retval != ERROR_OK) {
5868  LOG_DEBUG("target_create failed");
5869  free(target->cmd_name);
5871  free(target->gdb_port_override);
5872  free(target->trace_info);
5873  free(target->type);
5874  free(target->private_config);
5875  free(target);
5876  return retval;
5877  }
5878  }
5879 
5880  /* create the target specific commands */
5881  if (target->type->commands) {
5883  if (retval != ERROR_OK)
5884  LOG_ERROR("unable to register '%s' commands", CMD_ARGV[0]);
5885  }
5886 
5887  /* now - create the new target name command */
5888  const struct command_registration target_subcommands[] = {
5889  {
5891  },
5892  {
5893  .chain = target->type->commands,
5894  },
5896  };
5897  const struct command_registration target_commands[] = {
5898  {
5899  .name = CMD_ARGV[0],
5900  .mode = COMMAND_ANY,
5901  .help = "target command group",
5902  .usage = "",
5903  .chain = target_subcommands,
5904  },
5906  };
5907  retval = register_commands_override_target(CMD_CTX, NULL, target_commands, target);
5908  if (retval != ERROR_OK) {
5909  if (target->type->deinit_target)
5911  free(target->cmd_name);
5913  free(target->gdb_port_override);
5914  free(target->trace_info);
5915  free(target->type);
5916  free(target);
5917  return retval;
5918  }
5919 
5920  /* append to end of list */
5922 
5923  CMD_CTX->current_target = target;
5924  return ERROR_OK;
5925 }
5926 
5927 COMMAND_HANDLER(handle_target_current)
5928 {
5929  if (CMD_ARGC != 0)
5931 
5933  if (target)
5935 
5936  return ERROR_OK;
5937 }
5938 
5939 COMMAND_HANDLER(handle_target_types)
5940 {
5941  if (CMD_ARGC != 0)
5943 
5944  for (unsigned int x = 0; target_types[x]; x++)
5945  command_print(CMD, "%s", target_types[x]->name);
5946 
5947  return ERROR_OK;
5948 }
5949 
5950 COMMAND_HANDLER(handle_target_names)
5951 {
5952  if (CMD_ARGC != 0)
5954 
5955  struct target *target = all_targets;
5956  while (target) {
5958  target = target->next;
5959  }
5960 
5961  return ERROR_OK;
5962 }
5963 
5964 static struct target_list *
5965 __attribute__((warn_unused_result))
5966 create_target_list_node(const char *targetname)
5967 {
5968  struct target *target = get_target(targetname);
5969  LOG_DEBUG("%s ", targetname);
5970  if (!target)
5971  return NULL;
5972 
5973  struct target_list *new = malloc(sizeof(struct target_list));
5974  if (!new) {
5975  LOG_ERROR("Out of memory");
5976  return new;
5977  }
5978 
5979  new->target = target;
5980  return new;
5981 }
5982 
5984  struct list_head *lh, struct target **result)
5985 {
5986  struct target *target = NULL;
5987  struct target_list *curr;
5988  foreach_smp_target(curr, lh) {
5989  struct rtos *curr_rtos = curr->target->rtos;
5990  if (curr_rtos) {
5991  if (target && target->rtos && target->rtos->type != curr_rtos->type) {
5992  command_print(cmd, "Different rtos types in members of one smp target!");
5993  return ERROR_FAIL;
5994  }
5995  target = curr->target;
5996  }
5997  }
5998  *result = target;
5999  return ERROR_OK;
6000 }
6001 
6002 COMMAND_HANDLER(handle_target_smp)
6003 {
6004  static unsigned int smp_group = 1;
6005 
6006  if (CMD_ARGC == 0) {
6007  LOG_DEBUG("Empty SMP target");
6008  return ERROR_OK;
6009  }
6010  LOG_DEBUG("%d", CMD_ARGC);
6011  /* CMD_ARGC[0] = target to associate in smp
6012  * CMD_ARGC[1] = target to associate in smp
6013  * CMD_ARGC[2] ...
6014  */
6015 
6016  struct list_head *lh = malloc(sizeof(*lh));
6017  if (!lh) {
6018  LOG_ERROR("Out of memory");
6019  return ERROR_FAIL;
6020  }
6021  INIT_LIST_HEAD(lh);
6022 
6023  for (unsigned int i = 0; i < CMD_ARGC; i++) {
6024  struct target_list *new = create_target_list_node(CMD_ARGV[i]);
6025  if (new)
6026  list_add_tail(&new->lh, lh);
6027  }
6028  /* now parse the list of cpu and put the target in smp mode*/
6029  struct target_list *curr;
6030  foreach_smp_target(curr, lh) {
6031  struct target *target = curr->target;
6032  target->smp = smp_group;
6033  target->smp_targets = lh;
6034  }
6035  smp_group++;
6036 
6037  struct target *rtos_target;
6038  int retval = get_target_with_common_rtos_type(CMD, lh, &rtos_target);
6039  if (retval == ERROR_OK && rtos_target)
6040  retval = rtos_smp_init(rtos_target);
6041 
6042  return retval;
6043 }
6044 
6045 static const struct command_registration target_subcommand_handlers[] = {
6046  {
6047  .name = "init",
6048  .mode = COMMAND_CONFIG,
6049  .handler = handle_target_init_command,
6050  .help = "initialize targets",
6051  .usage = "",
6052  },
6053  {
6054  .name = "create",
6055  .mode = COMMAND_CONFIG,
6056  .handler = handle_target_create,
6057  .usage = "name type [options ...]",
6058  .help = "Creates and selects a new target",
6059  },
6060  {
6061  .name = "current",
6062  .mode = COMMAND_ANY,
6063  .handler = handle_target_current,
6064  .help = "Returns the currently selected target",
6065  .usage = "",
6066  },
6067  {
6068  .name = "types",
6069  .mode = COMMAND_ANY,
6070  .handler = handle_target_types,
6071  .help = "Returns the available target types as "
6072  "a list of strings",
6073  .usage = "",
6074  },
6075  {
6076  .name = "names",
6077  .mode = COMMAND_ANY,
6078  .handler = handle_target_names,
6079  .help = "Returns the names of all targets as a list of strings",
6080  .usage = "",
6081  },
6082  {
6083  .name = "smp",
6084  .mode = COMMAND_ANY,
6085  .handler = handle_target_smp,
6086  .usage = "targetname1 targetname2 ...",
6087  .help = "gather several target in a smp list"
6088  },
6089 
6091 };
6092 
6093 struct fast_load {
6095  uint8_t *data;
6096  int length;
6097 
6098 };
6099 
6100 static int fastload_num;
6101 static struct fast_load *fastload;
6102 
6103 static void free_fastload(void)
6104 {
6105  if (fastload) {
6106  for (int i = 0; i < fastload_num; i++)
6107  free(fastload[i].data);
6108  free(fastload);
6109  fastload = NULL;
6110  }
6111 }
6112 
6113 COMMAND_HANDLER(handle_fast_load_image_command)
6114 {
6115  uint8_t *buffer;
6116  size_t buf_cnt;
6117  uint32_t image_size;
6118  target_addr_t min_address = 0;
6119  target_addr_t max_address = -1;
6120 
6121  struct image image;
6122 
6123  int retval = CALL_COMMAND_HANDLER(parse_load_image_command,
6124  &image, &min_address, &max_address);
6125  if (retval != ERROR_OK)
6126  return retval;
6127 
6128  struct duration bench;
6129  duration_start(&bench);
6130 
6131  retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
6132  if (retval != ERROR_OK)
6133  return retval;
6134 
6135  image_size = 0x0;
6136  retval = ERROR_OK;
6138  fastload = malloc(sizeof(struct fast_load)*image.num_sections);
6139  if (!fastload) {
6140  command_print(CMD, "out of memory");
6141  image_close(&image);
6142  return ERROR_FAIL;
6143  }
6144  memset(fastload, 0, sizeof(struct fast_load)*image.num_sections);
6145  for (unsigned int i = 0; i < image.num_sections; i++) {
6146  buffer = malloc(image.sections[i].size);
6147  if (!buffer) {
6148  command_print(CMD, "error allocating buffer for section (%d bytes)",
6149  (int)(image.sections[i].size));
6150  retval = ERROR_FAIL;
6151  break;
6152  }
6153 
6154  retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
6155  if (retval != ERROR_OK) {
6156  free(buffer);
6157  break;
6158  }
6159 
6160  uint32_t offset = 0;
6161  uint32_t length = buf_cnt;
6162 
6163  /* DANGER!!! beware of unsigned comparison here!!! */
6164 
6165  if ((image.sections[i].base_address + buf_cnt >= min_address) &&
6166  (image.sections[i].base_address < max_address)) {
6167  if (image.sections[i].base_address < min_address) {
6168  /* clip addresses below */
6169  offset += min_address-image.sections[i].base_address;
6170  length -= offset;
6171  }
6172 
6173  if (image.sections[i].base_address + buf_cnt > max_address)
6174  length -= (image.sections[i].base_address + buf_cnt)-max_address;
6175 
6177  fastload[i].data = malloc(length);
6178  if (!fastload[i].data) {
6179  free(buffer);
6180  command_print(CMD, "error allocating buffer for section (%" PRIu32 " bytes)",
6181  length);
6182  retval = ERROR_FAIL;
6183  break;
6184  }
6185  memcpy(fastload[i].data, buffer + offset, length);
6186  fastload[i].length = length;
6187 
6188  image_size += length;
6189  command_print(CMD, "%u bytes written at address 0x%8.8x",
6190  (unsigned int)length,
6191  ((unsigned int)(image.sections[i].base_address + offset)));
6192  }
6193 
6194  free(buffer);
6195  }
6196 
6197  if ((retval == ERROR_OK) && (duration_measure(&bench) == ERROR_OK)) {
6198  command_print(CMD, "Loaded %" PRIu32 " bytes "
6199  "in %fs (%0.3f KiB/s)", image_size,
6200  duration_elapsed(&bench), duration_kbps(&bench, image_size));
6201 
6203  "WARNING: image has not been loaded to target!"
6204  "You can issue a 'fast_load' to finish loading.");
6205  }
6206 
6207  image_close(&image);
6208 
6209  if (retval != ERROR_OK)
6210  free_fastload();
6211 
6212  return retval;
6213 }
6214 
6215 COMMAND_HANDLER(handle_fast_load_command)
6216 {
6217  if (CMD_ARGC > 0)
6219  if (!fastload) {
6220  LOG_ERROR("No image in memory");
6221  return ERROR_FAIL;
6222  }
6223  int i;
6224  int64_t ms = timeval_ms();
6225  int size = 0;
6226  int retval = ERROR_OK;
6227  for (i = 0; i < fastload_num; i++) {
6229  command_print(CMD, "Write to 0x%08x, length 0x%08x",
6230  (unsigned int)(fastload[i].address),
6231  (unsigned int)(fastload[i].length));
6232  retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
6233  if (retval != ERROR_OK)
6234  break;
6235  size += fastload[i].length;
6236  }
6237  if (retval == ERROR_OK) {
6238  int64_t after = timeval_ms();
6239  command_print(CMD, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
6240  }
6241  return retval;
6242 }
6243 
6244 static const struct command_registration target_command_handlers[] = {
6245  {
6246  .name = "targets",
6247  .handler = handle_targets_command,
6248  .mode = COMMAND_ANY,
6249  .help = "change current default target (one parameter) "
6250  "or prints table of all targets (no parameters)",
6251  .usage = "[target]",
6252  },
6253  {
6254  .name = "target",
6255  .mode = COMMAND_CONFIG,
6256  .help = "configure target",
6257  .chain = target_subcommand_handlers,
6258  .usage = "",
6259  },
6261 };
6262 
6264 {
6266 }
6267 
6268 static bool target_reset_nag = true;
6269 
6271 {
6272  return target_reset_nag;
6273 }
6274 
6275 COMMAND_HANDLER(handle_target_reset_nag)
6276 {
6277  return CALL_COMMAND_HANDLER(handle_command_parse_bool,
6278  &target_reset_nag, "Nag after each reset about options to improve "
6279  "performance");
6280 }
6281 
6282 COMMAND_HANDLER(handle_ps_command)
6283 {
6285  char *display;
6286  if (target->state != TARGET_HALTED) {
6287  command_print(CMD, "Error: [%s] not halted", target_name(target));
6288  return ERROR_TARGET_NOT_HALTED;
6289  }
6290 
6291  if ((target->rtos) && (target->rtos->type)
6292  && (target->rtos->type->ps_command)) {
6293  display = target->rtos->type->ps_command(target);
6294  command_print(CMD, "%s", display);
6295  free(display);
6296  return ERROR_OK;
6297  } else {
6298  LOG_INFO("failed");
6299  return ERROR_TARGET_FAILURE;
6300  }
6301 }
6302 
6303 static void binprint(struct command_invocation *cmd, const char *text, const uint8_t *buf, int size)
6304 {
6305  if (text)
6306  command_print_sameline(cmd, "%s", text);
6307  for (int i = 0; i < size; i++)
6308  command_print_sameline(cmd, " %02x", buf[i]);
6309  command_print(cmd, " ");
6310 }
6311 
6312 COMMAND_HANDLER(handle_test_mem_access_command)
6313 {
6315  uint32_t test_size;
6316  int retval = ERROR_OK;
6317 
6318  if (target->state != TARGET_HALTED) {
6319  command_print(CMD, "Error: [%s] not halted", target_name(target));
6320  return ERROR_TARGET_NOT_HALTED;
6321  }
6322 
6323  if (CMD_ARGC != 1)
6325 
6326  COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], test_size);
6327 
6328  /* Test reads */
6329  size_t num_bytes = test_size + 4;
6330 
6331  struct working_area *wa = NULL;
6332  retval = target_alloc_working_area(target, num_bytes, &wa);
6333  if (retval != ERROR_OK) {
6334  LOG_ERROR("Not enough working area");
6335  return ERROR_FAIL;
6336  }
6337 
6338  uint8_t *test_pattern = malloc(num_bytes);
6339 
6340  for (size_t i = 0; i < num_bytes; i++)
6341  test_pattern[i] = rand();
6342 
6343  retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
6344  if (retval != ERROR_OK) {
6345  LOG_ERROR("Test pattern write failed");
6346  goto out;
6347  }
6348 
6349  for (int host_offset = 0; host_offset <= 1; host_offset++) {
6350  for (int size = 1; size <= 4; size *= 2) {
6351  for (int offset = 0; offset < 4; offset++) {
6352  uint32_t count = test_size / size;
6353  size_t host_bufsiz = (count + 2) * size + host_offset;
6354  uint8_t *read_ref = malloc(host_bufsiz);
6355  uint8_t *read_buf = malloc(host_bufsiz);
6356 
6357  for (size_t i = 0; i < host_bufsiz; i++) {
6358  read_ref[i] = rand();
6359  read_buf[i] = read_ref[i];
6360  }
6362  "Test read %" PRIu32 " x %d @ %d to %saligned buffer: ", count,
6363  size, offset, host_offset ? "un" : "");
6364 
6365  struct duration bench;
6366  duration_start(&bench);
6367 
6368  retval = target_read_memory(target, wa->address + offset, size, count,
6369  read_buf + size + host_offset);
6370 
6371  duration_measure(&bench);
6372 
6373  if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6374  command_print(CMD, "Unsupported alignment");
6375  goto next;
6376  } else if (retval != ERROR_OK) {
6377  command_print(CMD, "Memory read failed");
6378  goto next;
6379  }
6380 
6381  /* replay on host */
6382  memcpy(read_ref + size + host_offset, test_pattern + offset, count * size);
6383 
6384  /* check result */
6385  int result = memcmp(read_ref, read_buf, host_bufsiz);
6386  if (result == 0) {
6387  command_print(CMD, "Pass in %fs (%0.3f KiB/s)",
6388  duration_elapsed(&bench),
6389  duration_kbps(&bench, count * size));
6390  } else {
6391  command_print(CMD, "Compare failed");
6392  binprint(CMD, "ref:", read_ref, host_bufsiz);
6393  binprint(CMD, "buf:", read_buf, host_bufsiz);
6394  }
6395 next:
6396  free(read_ref);
6397  free(read_buf);
6398  }
6399  }
6400  }
6401 
6402 out:
6403  free(test_pattern);
6404 
6406 
6407  /* Test writes */
6408  num_bytes = test_size + 4 + 4 + 4;
6409 
6410  retval = target_alloc_working_area(target, num_bytes, &wa);
6411  if (retval != ERROR_OK) {
6412  LOG_ERROR("Not enough working area");
6413  return ERROR_FAIL;
6414  }
6415 
6416  test_pattern = malloc(num_bytes);
6417 
6418  for (size_t i = 0; i < num_bytes; i++)
6419  test_pattern[i] = rand();
6420 
6421  for (int host_offset = 0; host_offset <= 1; host_offset++) {
6422  for (int size = 1; size <= 4; size *= 2) {
6423  for (int offset = 0; offset < 4; offset++) {
6424  uint32_t count = test_size / size;
6425  size_t host_bufsiz = count * size + host_offset;
6426  uint8_t *read_ref = malloc(num_bytes);
6427  uint8_t *read_buf = malloc(num_bytes);
6428  uint8_t *write_buf = malloc(host_bufsiz);
6429 
6430  for (size_t i = 0; i < host_bufsiz; i++)
6431  write_buf[i] = rand();
6433  "Test write %" PRIu32 " x %d @ %d from %saligned buffer: ", count,
6434  size, offset, host_offset ? "un" : "");
6435 
6436  retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
6437  if (retval != ERROR_OK) {
6438  command_print(CMD, "Test pattern write failed");
6439  goto nextw;
6440  }
6441 
6442  /* replay on host */
6443  memcpy(read_ref, test_pattern, num_bytes);
6444  memcpy(read_ref + size + offset, write_buf + host_offset, count * size);
6445 
6446  struct duration bench;
6447  duration_start(&bench);
6448 
6449  retval = target_write_memory(target, wa->address + size + offset, size, count,
6450  write_buf + host_offset);
6451 
6452  duration_measure(&bench);
6453 
6454  if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6455  command_print(CMD, "Unsupported alignment");
6456  goto nextw;
6457  } else if (retval != ERROR_OK) {
6458  command_print(CMD, "Memory write failed");
6459  goto nextw;
6460  }
6461 
6462  /* read back */
6463  retval = target_read_memory(target, wa->address, 1, num_bytes, read_buf);
6464  if (retval != ERROR_OK) {
6465  command_print(CMD, "Test pattern write failed");
6466  goto nextw;
6467  }
6468 
6469  /* check result */
6470  int result = memcmp(read_ref, read_buf, num_bytes);
6471  if (result == 0) {
6472  command_print(CMD, "Pass in %fs (%0.3f KiB/s)",
6473  duration_elapsed(&bench),
6474  duration_kbps(&bench, count * size));
6475  } else {
6476  command_print(CMD, "Compare failed");
6477  binprint(CMD, "ref:", read_ref, num_bytes);
6478  binprint(CMD, "buf:", read_buf, num_bytes);
6479  }
6480 nextw:
6481  free(read_ref);
6482  free(read_buf);
6483  }
6484  }
6485  }
6486 
6487  free(test_pattern);
6488 
6490  return retval;
6491 }
6492 
6493 static const struct command_registration target_exec_command_handlers[] = {
6494  {
6495  .name = "fast_load_image",
6496  .handler = handle_fast_load_image_command,
6497  .mode = COMMAND_ANY,
6498  .help = "Load image into server memory for later use by "
6499  "fast_load; primarily for profiling",
6500  .usage = "filename [address ['bin'|'ihex'|'elf'|'s19' "
6501  "[min_address [max_length]]]]",
6502  },
6503  {
6504  .name = "fast_load",
6505  .handler = handle_fast_load_command,
6506  .mode = COMMAND_EXEC,
6507  .help = "loads active fast load image to current target "
6508  "- mainly for profiling purposes",
6509  .usage = "",
6510  },
6511  {
6512  .name = "profile",
6513  .handler = handle_profile_command,
6514  .mode = COMMAND_EXEC,
6515  .usage = "seconds filename [start end]",
6516  .help = "profiling samples the CPU PC",
6517  },
6519  {
6520  .name = "virt2phys",
6521  .handler = handle_virt2phys_command,
6522  .mode = COMMAND_ANY,
6523  .help = "translate a virtual address into a physical address",
6524  .usage = "virtual_address",
6525  },
6526  {
6527  .name = "reg",
6528  .handler = handle_reg_command,
6529  .mode = COMMAND_EXEC,
6530  .help = "display (reread from target with \"force\") or set a register; "
6531  "with no arguments, displays all registers and their values",
6532  .usage = "[(register_number|register_name) [(value|'force')]]",
6533  },
6534  {
6535  .name = "poll",
6536  .handler = handle_poll_command,
6537  .mode = COMMAND_EXEC,
6538  .help = "poll target state; or reconfigure background polling",
6539  .usage = "['on'|'off']",
6540  },
6541  {
6542  .name = "wait_halt",
6543  .handler = handle_wait_halt_command,
6544  .mode = COMMAND_EXEC,
6545  .help = "wait up to the specified number of milliseconds "
6546  "(default 5000) for a previously requested halt",
6547  .usage = "[milliseconds]",
6548  },
6549  {
6550  .name = "halt",
6551  .handler = handle_halt_command,
6552  .mode = COMMAND_EXEC,
6553  .help = "request target to halt, then wait up to the specified "
6554  "number of milliseconds (default 5000) for it to complete",
6555  .usage = "[milliseconds]",
6556  },
6557  {
6558  .name = "resume",
6559  .handler = handle_resume_command,
6560  .mode = COMMAND_EXEC,
6561  .help = "resume target execution from current PC or address",
6562  .usage = "[address]",
6563  },
6564  {
6565  .name = "reset",
6566  .handler = handle_reset_command,
6567  .mode = COMMAND_EXEC,
6568  .usage = "[run|halt|init]",
6569  .help = "Reset all targets into the specified mode. "
6570  "Default reset mode is run, if not given.",
6571  },
6572  {
6573  .name = "soft_reset_halt",
6574  .handler = handle_soft_reset_halt_command,
6575  .mode = COMMAND_EXEC,
6576  .usage = "",
6577  .help = "halt the target and do a soft reset",
6578  },
6579  {
6580  .name = "step",
6581  .handler = handle_step_command,
6582  .mode = COMMAND_EXEC,
6583  .help = "step one instruction from current PC or address",
6584  .usage = "[address]",
6585  },
6586  {
6587  .name = "mdd",
6588  .handler = handle_md_command,
6589  .mode = COMMAND_EXEC,
6590  .help = "display memory double-words",
6591  .usage = "['phys'] address [count]",
6592  },
6593  {
6594  .name = "mdw",
6595  .handler = handle_md_command,
6596  .mode = COMMAND_EXEC,
6597  .help = "display memory words",
6598  .usage = "['phys'] address [count]",
6599  },
6600  {
6601  .name = "mdh",
6602  .handler = handle_md_command,
6603  .mode = COMMAND_EXEC,
6604  .help = "display memory half-words",
6605  .usage = "['phys'] address [count]",
6606  },
6607  {
6608  .name = "mdb",
6609  .handler = handle_md_command,
6610  .mode = COMMAND_EXEC,
6611  .help = "display memory bytes",
6612  .usage = "['phys'] address [count]",
6613  },
6614  {
6615  .name = "mwd",
6616  .handler = handle_mw_command,
6617  .mode = COMMAND_EXEC,
6618  .help = "write memory double-word",
6619  .usage = "['phys'] address value [count]",
6620  },
6621  {
6622  .name = "mww",
6623  .handler = handle_mw_command,
6624  .mode = COMMAND_EXEC,
6625  .help = "write memory word",
6626  .usage = "['phys'] address value [count]",
6627  },
6628  {
6629  .name = "mwh",
6630  .handler = handle_mw_command,
6631  .mode = COMMAND_EXEC,
6632  .help = "write memory half-word",
6633  .usage = "['phys'] address value [count]",
6634  },
6635  {
6636  .name = "mwb",
6637  .handler = handle_mw_command,
6638  .mode = COMMAND_EXEC,
6639  .help = "write memory byte",
6640  .usage = "['phys'] address value [count]",
6641  },
6642  {
6643  .name = "bp",
6644  .handler = handle_bp_command,
6645  .mode = COMMAND_EXEC,
6646  .help = "list or set hardware or software breakpoint",
6647  .usage = "[<address> [<asid>] <length> ['hw'|'hw_ctx']]",
6648  },
6649  {
6650  .name = "rbp",
6651  .handler = handle_rbp_command,
6652  .mode = COMMAND_EXEC,
6653  .help = "remove breakpoint",
6654  .usage = "'all' | address",
6655  },
6656  {
6657  .name = "wp",
6658  .handler = handle_wp_command,
6659  .mode = COMMAND_EXEC,
6660  .help = "list (no params) or create watchpoints",
6661  .usage = "[address length [('r'|'w'|'a') [value [mask]]]]",
6662  },
6663  {
6664  .name = "rwp",
6665  .handler = handle_rwp_command,
6666  .mode = COMMAND_EXEC,
6667  .help = "remove watchpoint",
6668  .usage = "'all' | address",
6669  },
6670  {
6671  .name = "load_image",
6672  .handler = handle_load_image_command,
6673  .mode = COMMAND_EXEC,
6674  .usage = "filename [address ['bin'|'ihex'|'elf'|'s19' "
6675  "[min_address [max_length]]]]",
6676  },
6677  {
6678  .name = "dump_image",
6679  .handler = handle_dump_image_command,
6680  .mode = COMMAND_EXEC,
6681  .usage = "filename address size",
6682  },
6683  {
6684  .name = "verify_image_checksum",
6685  .handler = handle_verify_image_checksum_command,
6686  .mode = COMMAND_EXEC,
6687  .usage = "filename [offset [type]]",
6688  },
6689  {
6690  .name = "verify_image",
6691  .handler = handle_verify_image_command,
6692  .mode = COMMAND_EXEC,
6693  .usage = "filename [offset [type]]",
6694  },
6695  {
6696  .name = "test_image",
6697  .handler = handle_test_image_command,
6698  .mode = COMMAND_EXEC,
6699  .usage = "filename [offset [type]]",
6700  },
6701  {
6702  .name = "get_reg",
6703  .mode = COMMAND_EXEC,
6704  .handler = handle_target_get_reg,
6705  .help = "Get register values from the target",
6706  .usage = "[-force] list",
6707  },
6708  {
6709  .name = "set_reg",
6710  .mode = COMMAND_EXEC,
6711  .handler = handle_set_reg_command,
6712  .help = "Set target register values",
6713  .usage = "dict",
6714  },
6715  {
6716  .name = "read_memory",
6717  .mode = COMMAND_EXEC,
6718  .handler = handle_target_read_memory,
6719  .help = "Read Tcl list of 8/16/32/64 bit numbers from target memory",
6720  .usage = "address width count ['phys']",
6721  },
6722  {
6723  .name = "write_memory",
6724  .mode = COMMAND_EXEC,
6725  .handler = handle_target_write_memory,
6726  .help = "Write Tcl list of 8/16/32/64 bit numbers to target memory",
6727  .usage = "address width data ['phys']",
6728  },
6729  {
6730  .name = "debug_reason",
6731  .mode = COMMAND_EXEC,
6732  .handler = handle_target_debug_reason,
6733  .help = "displays the debug reason of this target",
6734  .usage = "",
6735  },
6736  {
6737  .name = "reset_nag",
6738  .handler = handle_target_reset_nag,
6739  .mode = COMMAND_ANY,
6740  .help = "Nag after each reset about options that could have been "
6741  "enabled to improve performance.",
6742  .usage = "['enable'|'disable']",
6743  },
6744  {
6745  .name = "ps",
6746  .handler = handle_ps_command,
6747  .mode = COMMAND_EXEC,
6748  .help = "list all tasks",
6749  .usage = "",
6750  },
6751  {
6752  .name = "test_mem_access",
6753  .handler = handle_test_mem_access_command,
6754  .mode = COMMAND_EXEC,
6755  .help = "Test the target's memory access functions",
6756  .usage = "size",
6757  },
6758 
6760 };
6762 {
6763  int retval = ERROR_OK;
6764  retval = target_request_register_commands(cmd_ctx);
6765  if (retval != ERROR_OK)
6766  return retval;
6767 
6768  retval = trace_register_commands(cmd_ctx);
6769  if (retval != ERROR_OK)
6770  return retval;
6771 
6772 
6774 }
6775 
6777 {
6778  switch (reason) {
6779  case DBG_REASON_DBGRQ:
6780  return "DBGRQ";
6781  case DBG_REASON_BREAKPOINT:
6782  return "BREAKPOINT";
6783  case DBG_REASON_WATCHPOINT:
6784  return "WATCHPOINT";
6785  case DBG_REASON_WPTANDBKPT:
6786  return "WPTANDBKPT";
6787  case DBG_REASON_SINGLESTEP:
6788  return "SINGLESTEP";
6789  case DBG_REASON_NOTHALTED:
6790  return "NOTHALTED";
6791  case DBG_REASON_EXIT:
6792  return "EXIT";
6793  case DBG_REASON_EXC_CATCH:
6794  return "EXC_CATCH";
6795  case DBG_REASON_UNDEFINED:
6796  return "UNDEFINED";
6797  default:
6798  return "UNKNOWN!";
6799  }
6800 }
struct target_type aarch64_target
Definition: aarch64.c:3246
struct target_type armv8r_target
Definition: aarch64.c:3287
#define IS_ALIGNED(x, a)
Definition: align.h:22
#define IS_PWR_OF_2(x)
Definition: align.h:24
#define ALIGN_DOWN(x, a)
Definition: align.h:21
#define ALIGN_UP(x, a)
Definition: align.h:20
struct target_type arcv2_target
Definition: arc.c:2321
struct target_type arm11_target
Holds methods for ARM11xx targets.
Definition: arm11.c:1346
struct target_type arm720t_target
Holds methods for ARM720 targets.
Definition: arm720t.c:464
struct target_type arm7tdmi_target
Holds methods for ARM7TDMI targets.
Definition: arm7tdmi.c:684
struct target_type arm920t_target
Holds methods for ARM920 targets.
Definition: arm920t.c:1596
struct target_type arm926ejs_target
Holds methods for ARM926 targets.
Definition: arm926ejs.c:790
struct target_type arm946e_target
Holds methods for ARM946 targets.
Definition: arm946e.c:738
struct target_type arm966e_target
Holds methods for ARM966 targets.
Definition: arm966e.c:245
struct target_type arm9tdmi_target
Holds methods for ARM9TDMI targets.
Definition: arm9tdmi.c:888
const char * name
Definition: armv4_5.c:76
struct target_type avr32_ap7k_target
Definition: avr32_ap7k.c:581
struct target_type avr_target
Definition: avrt.c:39
char * buf_to_hex_str(const void *_buf, unsigned int buf_len)
Definition: binarybuffer.c:178
static uint32_t buf_get_u32(const uint8_t *_buffer, unsigned int first, unsigned int num)
Retrieves num bits from _buffer, starting at the first bit, returning the bits in a 32-bit word.
Definition: binarybuffer.h:104
int watchpoint_add(struct target *target, target_addr_t address, unsigned int length, enum watchpoint_rw rw, uint64_t value, uint64_t mask)
Definition: breakpoints.c:568
int breakpoint_remove(struct target *target, target_addr_t address)
Definition: breakpoints.c:344
int watchpoint_remove(struct target *target, target_addr_t address)
Definition: breakpoints.c:605
int breakpoint_add(struct target *target, target_addr_t address, unsigned int length, enum breakpoint_type type)
Definition: breakpoints.c:208
int context_breakpoint_add(struct target *target, uint32_t asid, unsigned int length, enum breakpoint_type type)
Definition: breakpoints.c:234
int watchpoint_remove_all(struct target *target)
Definition: breakpoints.c:463
int breakpoint_remove_all(struct target *target)
Definition: breakpoints.c:458
int hybrid_breakpoint_add(struct target *target, target_addr_t address, uint32_t asid, unsigned int length, enum breakpoint_type type)
Definition: breakpoints.c:255
@ BKPT_HARD
Definition: breakpoints.h:18
@ BKPT_SOFT
Definition: breakpoints.h:19
#define WATCHPOINT_IGNORE_DATA_VALUE_MASK
Definition: breakpoints.h:39
watchpoint_rw
Definition: breakpoints.h:22
@ WPT_ACCESS
Definition: breakpoints.h:23
@ WPT_READ
Definition: breakpoints.h:23
@ WPT_WRITE
Definition: breakpoints.h:23
struct command_context * current_command_context(Jim_Interp *interp)
Definition: command.c:90
int command_parse_bool_arg(const char *in, bool *out)
Definition: command.c:1289
void command_print_sameline(struct command_invocation *cmd, const char *format,...)
Definition: command.c:352
void command_print(struct command_invocation *cmd, const char *format,...)
Definition: command.c:375
int command_run_line(struct command_context *context, char *line)
Definition: command.c:476
#define CMD
Use this macro to access the command being handled, rather than accessing the variable directly.
Definition: command.h:141
#define CALL_COMMAND_HANDLER(name, extra ...)
Use this to macro to call a command helper (or a nested handler).
Definition: command.h:118
#define CMD_NAME
Use this macro to access the name of the command being handled, rather than accessing the variable di...
Definition: command.h:166
#define CMD_ARGV
Use this macro to access the arguments for the command being handled, rather than accessing the varia...
Definition: command.h:156
#define COMMAND_PARSE_ADDRESS(in, out)
Definition: command.h:450
#define COMMAND_PARSE_ON_OFF(in, out)
parses an on/off command argument
Definition: command.h:528
#define ERROR_COMMAND_SYNTAX_ERROR
Definition: command.h:400
static int register_commands_override_target(struct command_context *cmd_ctx, const char *cmd_prefix, const struct command_registration *cmds, struct target *target)
Register one or more commands, as register_commands(), plus specify that command should override the ...
Definition: command.h:291
#define ERROR_COMMAND_CLOSE_CONNECTION
Definition: command.h:399
#define CMD_ARGC
Use this macro to access the number of arguments for the command being handled, rather than accessing...
Definition: command.h:151
#define CMD_JIMTCL_ARGV
Use this macro to access the jimtcl arguments for the command being handled, rather than accessing th...
Definition: command.h:161
#define COMMAND_PARSE_NUMBER(type, in, out)
parses the string in into out as a type, or prints a command error and passes the error code to the c...
Definition: command.h:440
#define CMD_CTX
Use this macro to access the context of the command being handled, rather than accessing the variable...
Definition: command.h:146
#define COMMAND_REGISTRATION_DONE
Use this as the last entry in an array of command_registration records.
Definition: command.h:251
#define ERROR_COMMAND_ARGUMENT_INVALID
Definition: command.h:402
static int register_commands(struct command_context *cmd_ctx, const char *cmd_prefix, const struct command_registration *cmds)
Register one or more commands in the specified context, as children of parent (or top-level commends,...
Definition: command.h:272
@ COMMAND_CONFIG
Definition: command.h:41
@ COMMAND_ANY
Definition: command.h:42
@ COMMAND_EXEC
Definition: command.h:40
struct target_type cortexr4_target
Definition: cortex_a.c:3507
struct target_type cortexa_target
Definition: cortex_a.c:3427
struct target_type cortexm_target
Definition: cortex_m.c:3183
struct target_type dsp563xx_target
Holds methods for DSP563XX targets.
Definition: dsp563xx.c:2250
struct target_type dsp5680xx_target
Holds methods for dsp5680xx targets.
Definition: dsp5680xx.c:2245
uint64_t buffer
Pointer to data buffer to send over SPI.
Definition: dw-spi-helper.h:0
uint32_t size
Size of dw_spi_transaction::buffer.
Definition: dw-spi-helper.h:4
uint32_t buffer_size
Size of dw_spi_program::buffer.
Definition: dw-spi-helper.h:5
uint32_t address
Starting address. Sector aligned.
Definition: dw-spi-helper.h:0
unsigned short width
Definition: embeddedice.c:47
struct target_type esirisc_target
Definition: esirisc.c:1834
struct target_type esp32_target
Holds methods for Xtensa targets.
Definition: esp32.c:461
struct target_type esp32s2_target
Definition: esp32s2.c:498
struct target_type esp32s3_target
Holds methods for Xtensa targets.
Definition: esp32s3.c:382
uint8_t type
Definition: esp_usb_jtag.c:0
static struct esp_usb_jtag * priv
Definition: esp_usb_jtag.c:219
uint8_t length
Definition: esp_usb_jtag.c:1
struct target_type fa526_target
Holds methods for FA526 targets.
Definition: fa526.c:350
struct target_type dragonite_target
Definition: feroceon.c:730
struct target_type feroceon_target
Definition: feroceon.c:691
#define ERROR_FLASH_OPERATION_FAILED
Definition: flash/common.h:30
static uint16_t output
Definition: ftdi.c:119
int fileio_write(struct fileio *fileio, size_t size, const void *buffer, size_t *size_written)
int fileio_close(struct fileio *fileio)
int fileio_size(struct fileio *fileio, size_t *size)
FIX!!!!
int fileio_open(struct fileio **fileio, const char *url, enum fileio_access access_type, enum fileio_type type)
@ FILEIO_WRITE
Definition: helper/fileio.h:29
@ FILEIO_BINARY
Definition: helper/fileio.h:23
struct target_type hla_target
Definition: hla_target.c:640
void image_close(struct image *image)
Definition: image.c:1211
int image_read_section(struct image *image, int section, target_addr_t offset, uint32_t size, uint8_t *buffer, size_t *size_read)
Definition: image.c:1079
int image_calculate_checksum(const uint8_t *buffer, uint32_t nbytes, uint32_t *checksum)
Definition: image.c:1268
int image_open(struct image *image, const char *url, const char *type_string)
Definition: image.c:957
int jim_getopt_setup(struct jim_getopt_info *p, Jim_Interp *interp, int argc, Jim_Obj *const *argv)
GetOpt - how to.
Definition: jim-nvp.c:149
int jtag_unregister_event_callback(jtag_event_handler_t callback, void *priv)
Definition: jtag/core.c:309
void jtag_poll_unmask(bool saved)
Restore saved mask for polling.
Definition: jtag/core.c:183
struct jtag_tap * jtag_tap_by_string(const char *s)
Definition: jtag/core.c:243
void jtag_poll_set_enabled(bool value)
Assign flag reporting whether JTAG polling is disallowed.
Definition: jtag/core.c:171
int jtag_srst_asserted(int *srst_asserted)
Definition: jtag/core.c:1738
bool is_jtag_poll_safe(void)
Return true if it's safe for a background polling task to access the JTAG scan chain.
Definition: jtag/core.c:148
int jtag_power_dropout(int *dropout)
Definition: jtag/core.c:1723
int jtag_register_event_callback(jtag_event_handler_t callback, void *priv)
Definition: jtag/core.c:288
bool jtag_poll_get_enabled(void)
Return flag reporting whether JTAG polling is disallowed.
Definition: jtag/core.c:166
bool jtag_poll_mask(void)
Mask (disable) polling and return the current mask status that should be feed to jtag_poll_unmask() t...
Definition: jtag/core.c:176
The JTAG interface can be implemented with a software or hardware fifo.
jtag_event
Definition: jtag.h:179
@ JTAG_TAP_EVENT_ENABLE
Definition: jtag.h:182
static void list_add(struct list_head *new, struct list_head *head)
Definition: list.h:197
static void list_add_tail(struct list_head *new, struct list_head *head)
Definition: list.h:203
#define list_for_each_entry_safe(p, n, h, field)
Definition: list.h:159
#define list_for_each_entry(p, h, field)
Definition: list.h:155
static void list_del(struct list_head *entry)
Definition: list.h:88
static void INIT_LIST_HEAD(struct list_head *list)
Definition: list.h:54
void alive_sleep(uint64_t ms)
Definition: log.c:467
void keep_alive(void)
Definition: log.c:426
char * alloc_printf(const char *format,...)
Definition: log.c:375
#define LOG_TARGET_INFO(target, fmt_str,...)
Definition: log.h:153
#define ERROR_NOT_IMPLEMENTED
Definition: log.h:178
#define LOG_WARNING(expr ...)
Definition: log.h:130
#define ERROR_FAIL
Definition: log.h:174
#define LOG_TARGET_ERROR(target, fmt_str,...)
Definition: log.h:162
#define LOG_TARGET_DEBUG(target, fmt_str,...)
Definition: log.h:150
#define LOG_ERROR(expr ...)
Definition: log.h:133
#define LOG_INFO(expr ...)
Definition: log.h:127
#define LOG_DEBUG(expr ...)
Definition: log.h:110
#define ERROR_OK
Definition: log.h:168
struct target_type ls1_sap_target
Definition: ls1_sap.c:216
struct target_type mem_ap_target
Definition: mem_ap.c:265
#define zero
Definition: mips32.c:181
struct target_type mips_m4k_target
Definition: mips_m4k.c:1451
struct target_type mips_mips64_target
Definition: mips_mips64.c:1151
Upper level NOR flash interfaces.
void nvp_unknown_command_print(struct command_invocation *cmd, const struct nvp *nvp, const char *param_name, const char *param_value)
Definition: nvp.c:49
const struct nvp * nvp_name2value(const struct nvp *p, const char *name)
Definition: nvp.c:29
const struct nvp * nvp_value2name(const struct nvp *p, int value)
Definition: nvp.c:39
static uint32_t lh(unsigned int rd, unsigned int base, uint16_t offset) __attribute__((unused))
Definition: opcodes.h:117
struct target_type or1k_target
Definition: or1k.c:1416
uint8_t bits[QN908X_FLASH_MAX_BLOCKS *QN908X_FLASH_PAGES_PER_BLOCK/8]
Definition: qn908x.c:0
struct target_type quark_d20xx_target
Definition: quark_d20xx.c:79
struct target_type quark_x10xx_target
Definition: quark_x10xx.c:57
struct reg * register_get_by_name(struct reg_cache *first, const char *name, bool search_all)
Definition: register.c:50
#define MIN(a, b)
Definition: replacements.h:22
int gettimeofday(struct timeval *tv, struct timezone *tz)
struct target_type riscv_target
Definition: riscv.c:3069
int rtos_create(struct command_invocation *cmd, struct target *target, const char *rtos_name)
Definition: rtos.c:97
void rtos_destroy(struct target *target)
Definition: rtos.c:142
int rtos_smp_init(struct target *target)
Definition: rtos.c:37
target_addr_t addr
Start address to search for the control block.
Definition: rtt/rtt.c:28
struct target * target
Definition: rtt/rtt.c:26
bool openocd_is_shutdown_pending(void)
Definition: server.c:752
#define CONNECTION_LIMIT_UNLIMITED
Definition: server.h:34
#define ERROR_SERVER_INTERRUPTED
Definition: server.h:121
#define foreach_smp_target(pos, head)
Definition: smp.h:15
struct target_type stm8_target
Definition: stm8.c:2202
struct breakpoint * next
Definition: breakpoints.h:34
unsigned int length
Definition: breakpoints.h:29
uint8_t * orig_instr
Definition: breakpoints.h:33
enum breakpoint_type type
Definition: breakpoints.h:30
unsigned int number
Definition: breakpoints.h:32
uint32_t asid
Definition: breakpoints.h:28
target_addr_t address
Definition: breakpoints.h:27
Jim_Interp * interp
Definition: command.h:53
struct target * current_target_override
Definition: command.h:57
struct target * current_target
Definition: command.h:55
When run_command is called, a new instance will be created on the stack, filled with the proper value...
Definition: command.h:76
const char * name
Definition: command.h:234
const struct command_registration * chain
If non-NULL, the commands in chain will be registered in the same context and scope of this registrat...
Definition: command.h:247
const char * usage
a string listing the options and arguments, required or optional
Definition: command.h:239
int length
Definition: target.c:6096
uint8_t * data
Definition: target.c:6095
target_addr_t address
Definition: target.c:6094
Definition: image.h:48
unsigned int num_sections
Definition: image.h:51
bool start_address_set
Definition: image.h:55
struct imagesection * sections
Definition: image.h:52
long long base_address
Definition: image.h:54
bool base_address_set
Definition: image.h:53
target_addr_t base_address
Definition: image.h:42
uint32_t size
Definition: image.h:43
A TCL -ish GetOpt like code.
Definition: jim-nvp.h:136
bool is_configure
Definition: jim-nvp.h:140
Definition: jtag.h:101
bool enabled
Is this TAP currently enabled?
Definition: jtag.h:109
char * dotted_name
Definition: jtag.h:104
Definition: list.h:41
Name Value Pairs, aka: NVP.
Definition: nvp.h:61
int value
Definition: nvp.h:63
const char * name
Definition: nvp.h:62
int(* get)(struct reg *reg)
Definition: register.h:152
int(* set)(struct reg *reg, uint8_t *buf)
Definition: register.h:153
const char * name
Definition: register.h:145
unsigned int num_regs
Definition: register.h:148
struct reg * reg_list
Definition: register.h:147
struct reg_cache * next
Definition: register.h:146
Definition: register.h:111
bool valid
Definition: register.h:126
bool exist
Definition: register.h:128
uint32_t size
Definition: register.h:132
uint8_t * value
Definition: register.h:122
bool hidden
Definition: register.h:130
bool dirty
Definition: register.h:124
const struct reg_arch_type * type
Definition: register.h:141
const char * name
Definition: register.h:113
const char * name
Definition: rtos.h:59
char *(* ps_command)(struct target *target)
Definition: rtos.h:71
Definition: rtos.h:35
const struct rtos_type * type
Definition: rtos.h:36
char * basedir
Base directory for semihosting I/O operations.
Jim_Interp * interp
Definition: target.c:58
Jim_Obj * body
Definition: target.c:59
struct list_head list
Definition: target.c:60
enum target_event event
Definition: target.c:57
int(* callback)(struct target *target, enum target_event event, void *priv)
Definition: target.h:304
struct target_event_callback * next
Definition: target.h:306
struct list_head lh
Definition: target.h:216
struct target * target
Definition: target.h:217
int(* callback)(struct target *target, enum target_reset_mode reset_mode, void *priv)
Definition: target.h:312
struct list_head list
Definition: target.h:310
int(* callback)(void *priv)
Definition: target.h:327
struct target_timer_callback * next
Definition: target.h:333
unsigned int time_ms
Definition: target.h:328
enum target_timer_type type
Definition: target.h:329
int(* callback)(struct target *target, size_t len, uint8_t *data, void *priv)
Definition: target.h:318
struct list_head list
Definition: target.h:316
This holds methods shared between all instances of a given target type.
Definition: target_type.h:26
int(* add_context_breakpoint)(struct target *target, struct breakpoint *breakpoint)
Definition: target_type.h:154
int(* add_breakpoint)(struct target *target, struct breakpoint *breakpoint)
Definition: target_type.h:153
int(* write_memory)(struct target *target, target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
Target memory write callback.
Definition: target_type.h:124
int(* hit_watchpoint)(struct target *target, struct watchpoint **hit_watchpoint)
Definition: target_type.h:175
const char * name
Name of this type of target.
Definition: target_type.h:31
int(* deassert_reset)(struct target *target)
The implementation is responsible for polling the target such that target->state reflects the state c...
Definition: target_type.h:76
int(* get_gdb_reg_list)(struct target *target, struct reg **reg_list[], int *reg_list_size, enum target_register_class reg_class)
Target register access for GDB.
Definition: target_type.h:99
int(* resume)(struct target *target, bool current, target_addr_t address, bool handle_breakpoints, bool debug_execution)
Definition: target_type.h:45
void(* deinit_target)(struct target *target)
Free all the resources allocated by the target.
Definition: target_type.h:243
int(* halt)(struct target *target)
Definition: target_type.h:43
int(* check_reset)(struct target *target)
Definition: target_type.h:275
int(* gdb_fileio_end)(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
Definition: target_type.h:283
int(* blank_check_memory)(struct target *target, struct target_memory_check_block *blocks, int num_blocks, uint8_t erased_value)
Definition: target_type.h:137
int(* assert_reset)(struct target *target)
Definition: target_type.h:64
int(* run_algorithm)(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_param, target_addr_t entry_point, target_addr_t exit_point, unsigned int timeout_ms, void *arch_info)
Target algorithm support.
Definition: target_type.h:181
int(* wait_algorithm)(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_param, target_addr_t exit_point, unsigned int timeout_ms, void *arch_info)
Definition: target_type.h:189
const struct command_registration * commands
Definition: target_type.h:194
int(* profiling)(struct target *target, uint32_t *samples, uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
Definition: target_type.h:296
int(* soft_reset_halt)(struct target *target)
Definition: target_type.h:77
const char *(* get_gdb_arch)(const struct target *target)
Target architecture for GDB.
Definition: target_type.h:86
int(* arch_state)(struct target *target)
Definition: target_type.h:37
unsigned int(* address_bits)(struct target *target)
Definition: target_type.h:302
int(* read_memory)(struct target *target, target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
Target memory read callback.
Definition: target_type.h:118
int(* get_gdb_fileio_info)(struct target *target, struct gdb_fileio_info *fileio_info)
Definition: target_type.h:279
unsigned int(* data_bits)(struct target *target)
Definition: target_type.h:307
int(* target_jim_configure)(struct target *target, struct jim_getopt_info *goi)
Definition: target_type.h:202
int(* step)(struct target *target, bool current, target_addr_t address, bool handle_breakpoints)
Definition: target_type.h:47
int(* read_phys_memory)(struct target *target, target_addr_t phys_address, uint32_t size, uint32_t count, uint8_t *buffer)
Definition: target_type.h:258
int(* get_gdb_reg_list_noread)(struct target *target, struct reg **reg_list[], int *reg_list_size, enum target_register_class reg_class)
Same as get_gdb_reg_list, but doesn't read the register values.
Definition: target_type.h:105
int(* mmu)(struct target *target, int *enabled)
Definition: target_type.h:267
int(* start_algorithm)(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_param, target_addr_t entry_point, target_addr_t exit_point, void *arch_info)
Definition: target_type.h:185
int(* read_buffer)(struct target *target, target_addr_t address, uint32_t size, uint8_t *buffer)
Definition: target_type.h:128
int(* add_watchpoint)(struct target *target, struct watchpoint *watchpoint)
Definition: target_type.h:164
int(* target_create)(struct target *target)
Definition: target_type.h:197
int(* write_buffer)(struct target *target, target_addr_t address, uint32_t size, const uint8_t *buffer)
Definition: target_type.h:132
int(* poll)(struct target *target)
Definition: target_type.h:34
int(* add_hybrid_breakpoint)(struct target *target, struct breakpoint *breakpoint)
Definition: target_type.h:155
int(* examine)(struct target *target)
This method is used to perform target setup that requires JTAG access.
Definition: target_type.h:218
int(* write_phys_memory)(struct target *target, target_addr_t phys_address, uint32_t size, uint32_t count, const uint8_t *buffer)
Definition: target_type.h:264
int(* remove_breakpoint)(struct target *target, struct breakpoint *breakpoint)
Definition: target_type.h:161
int(* virt2phys)(struct target *target, target_addr_t address, target_addr_t *physical)
Definition: target_type.h:248
int(* checksum_memory)(struct target *target, target_addr_t address, uint32_t count, uint32_t *checksum)
Definition: target_type.h:135
int(* remove_watchpoint)(struct target *target, struct watchpoint *watchpoint)
Definition: target_type.h:170
Definition: target.h:119
int32_t coreid
Definition: target.h:123
struct semihosting * semihosting
Definition: target.h:212
target_addr_t working_area
Definition: target.h:148
target_addr_t working_area_virt
Definition: target.h:151
uint32_t working_area_size
Definition: target.h:154
struct jtag_tap * tap
Definition: target.h:122
bool dbgbase_set
Definition: target.h:177
struct trace * trace_info
Definition: target.h:164
bool dbg_msg_enabled
Definition: target.h:166
enum target_debug_reason debug_reason
Definition: target.h:157
enum target_state state
Definition: target.h:160
uint32_t dbgbase
Definition: target.h:178
void * private_config
Definition: target.h:168
char * gdb_port_override
Definition: target.h:207
enum target_endianness endianness
Definition: target.h:158
struct reg_cache * reg_cache
Definition: target.h:161
bool backup_working_area
Definition: target.h:155
bool halt_issued
Definition: target.h:173
struct list_head * smp_targets
Definition: target.h:191
struct breakpoint * breakpoints
Definition: target.h:162
struct working_area * working_areas
Definition: target.h:156
bool verbose_halt_msg
Definition: target.h:171
bool dap_configured
Definition: target.h:182
struct rtos * rtos
Definition: target.h:186
struct gdb_fileio_info * fileio_info
Definition: target.h:205
struct debug_msg_receiver * dbgmsg
Definition: target.h:165
bool rtos_auto_detect
Definition: target.h:187
int64_t halt_issued_time
Definition: target.h:174
unsigned int smp
Definition: target.h:190
struct list_head events_action
Definition: target.h:145
struct target_type * type
Definition: target.h:120
struct backoff_timer backoff
Definition: target.h:189
target_addr_t working_area_phys
Definition: target.h:153
bool has_dap
Definition: target.h:181
bool tap_configured
Definition: target.h:183
struct watchpoint * watchpoints
Definition: target.h:163
bool working_area_phys_spec
Definition: target.h:152
bool running_alg
true if the target is currently running a downloaded "algorithm" instead of arbitrary user code.
Definition: target.h:143
void * arch_info
Definition: target.h:167
int gdb_max_connections
Definition: target.h:209
bool working_area_virt_spec
Definition: target.h:150
bool reset_halt
Definition: target.h:147
bool examined
Indicates whether this target has been examined.
Definition: target.h:134
char * cmd_name
Definition: target.h:121
bool defer_examine
Should we defer examine to later.
Definition: target.h:126
struct target * next
Definition: target.h:169
Definition: psoc6.c:83
Definition: trace.h:21
Wrapper for transport lifecycle operations.
Definition: transport.h:55
int(* override_target)(const char **targetname)
Optional.
Definition: transport.h:85
uint64_t mask
Definition: breakpoints.h:44
enum watchpoint_rw rw
Definition: breakpoints.h:46
struct watchpoint * next
Definition: breakpoints.h:49
unsigned int length
Definition: breakpoints.h:43
uint64_t value
Definition: breakpoints.h:45
target_addr_t address
Definition: breakpoints.h:42
uint32_t size
Definition: target.h:90
bool free
Definition: target.h:91
struct working_area * next
Definition: target.h:94
target_addr_t address
Definition: target.h:89
struct working_area ** user
Definition: target.h:93
uint8_t * backup
Definition: target.h:92
COMMAND_HANDLER(handle_target_init_command)
Definition: target.c:1572
static bool target_reset_nag
Definition: target.c:6268
void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
Definition: target.c:410
void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
Definition: target.c:370
int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
Obtain file-I/O information from target for GDB to do syscall.
Definition: target.c:1436
unsigned char UNIT[2]
Definition: target.c:4213
static int run_srst_deasserted
Definition: target.c:2862
int target_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
Add the watchpoint for target.
Definition: target.c:1339
static int target_call_timer_callback(struct target_timer_callback *cb, int64_t *now)
Definition: target.c:1829
struct target * all_targets
Definition: target.c:115
static int target_get_gdb_fileio_info_default(struct target *target, struct gdb_fileio_info *fileio_info)
Definition: target.c:2283
int target_run_read_async_algorithm(struct target *target, uint8_t *buffer, uint32_t count, int block_size, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_params, uint32_t buffer_start, uint32_t buffer_size, uint32_t entry_point, uint32_t exit_point, void *arch_info)
This routine is a wrapper for asynchronous algorithms.
Definition: target.c:1093
int target_write_phys_u32(struct target *target, target_addr_t address, uint32_t value)
Definition: target.c:2731
uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
Definition: target.c:316
int target_call_event_callbacks(struct target *target, enum target_event event)
Definition: target.c:1774
struct target * get_target(const char *id)
Definition: target.c:442
void target_free_all_working_areas(struct target *target)
Definition: target.c:2160
int target_unregister_reset_callback(int(*callback)(struct target *target, enum target_reset_mode reset_mode, void *priv), void *priv)
Definition: target.c:1720
int target_write_phys_u64(struct target *target, target_addr_t address, uint64_t value)
Definition: target.c:2710
static const struct nvp nvp_target_event[]
Definition: target.c:165
static OOCD_LIST_HEAD(target_reset_callback_list)
static int target_write_buffer_default(struct target *target, target_addr_t address, uint32_t count, const uint8_t *buffer)
Definition: target.c:2375
int target_unregister_event_callback(int(*callback)(struct target *target, enum target_event event, void *priv), void *priv)
Definition: target.c:1697
static void write_long(FILE *f, int l, struct target *target)
Definition: target.c:4200
int target_read_phys_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
Definition: target.c:1261
static void binprint(struct command_invocation *cmd, const char *text, const uint8_t *buf, int size)
Definition: target.c:6303
int target_register_event_callback(int(*callback)(struct target *target, enum target_event event, void *priv), void *priv)
Definition: target.c:1602
static const struct command_registration target_command_handlers[]
Definition: target.c:6244
int target_write_phys_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
Definition: target.c:1289
static int run_power_restore
Definition: target.c:2859
int target_halt(struct target *target)
Definition: target.c:516
static struct target_timer_callback * target_timer_callbacks
Definition: target.c:117
int target_get_gdb_reg_list_noread(struct target *target, struct reg **reg_list[], int *reg_list_size, enum target_register_class reg_class)
Obtain the registers for GDB, but don't read register values from the target.
Definition: target.c:1400
bool target_supports_gdb_connection(const struct target *target)
Check if target allows GDB connections.
Definition: target.c:1411
int target_arch_state(struct target *target)
Definition: target.c:2268
void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
Definition: target.c:379
static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
Definition: target.c:2096
int target_call_timer_callbacks_now(void)
Invoke this to ensure that e.g.
Definition: target.c:1894
int target_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
Remove the breakpoint for target.
Definition: target.c:1333
static int target_profiling(struct target *target, uint32_t *samples, uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
Definition: target.c:1477
void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
Definition: target.c:361
int target_register_commands(struct command_context *cmd_ctx)
Definition: target.c:6263
static const struct nvp nvp_target_debug_reason[]
Definition: target.c:227
static int target_read_buffer_default(struct target *target, target_addr_t address, uint32_t count, uint8_t *buffer)
Definition: target.c:2440
int target_checksum_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t *crc)
Definition: target.c:2476
static void target_merge_working_areas(struct target *target)
Definition: target.c:1948
static const struct nvp nvp_target_state[]
Definition: target.c:217
static int handle_bp_command_list(struct command_invocation *cmd)
Definition: target.c:3925
int target_write_buffer(struct target *target, target_addr_t address, uint32_t size, const uint8_t *buffer)
Definition: target.c:2351
static int get_target_with_common_rtos_type(struct command_invocation *cmd, struct list_head *lh, struct target **result)
Definition: target.c:5983
int target_add_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
Add the ContextID & IVA breakpoint for target.
Definition: target.c:1323
static int default_examine(struct target *target)
Definition: target.c:668
int target_write_u8(struct target *target, target_addr_t address, uint8_t value)
Definition: target.c:2692
int target_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
Add the breakpoint for target.
Definition: target.c:1303
target_addr_t target_address_max(struct target *target)
Return the highest accessible address for this target.
Definition: target.c:1454
int target_write_u16(struct target *target, target_addr_t address, uint16_t value)
Definition: target.c:2671
int target_unregister_timer_callback(int(*callback)(void *priv), void *priv)
Definition: target.c:1758
int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
Pass GDB file-I/O response to target after finishing host syscall.
Definition: target.c:1445
int target_read_buffer(struct target *target, target_addr_t address, uint32_t size, uint8_t *buffer)
Definition: target.c:2416
int target_unregister_trace_callback(int(*callback)(struct target *target, size_t len, uint8_t *data, void *priv), void *priv)
Definition: target.c:1739
int target_read_u8(struct target *target, target_addr_t address, uint8_t *value)
Definition: target.c:2607
static void write_string(FILE *f, char *s)
Definition: target.c:4208
int target_blank_check_memory(struct target *target, struct target_memory_check_block *blocks, int num_blocks, uint8_t erased_value)
Definition: target.c:2520
int target_run_algorithm(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_param, target_addr_t entry_point, target_addr_t exit_point, unsigned int timeout_ms, void *arch_info)
Downloads a target-specific native code algorithm to the target, and executes it.
Definition: target.c:783
static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
Definition: target.c:388
unsigned int target_address_bits(struct target *target)
Return the number of address bits this target supports.
Definition: target.c:1463
static struct target_list * __attribute__((warn_unused_result))
Definition: target.c:5965
int target_profiling_default(struct target *target, uint32_t *samples, uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
Definition: target.c:2299
static const struct command_registration target_subcommand_handlers[]
Definition: target.c:6045
int target_write_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
Write count items of size bytes to the memory of target at the address given.
Definition: target.c:1275
static int jtag_enable_callback(enum jtag_event event, void *priv)
Definition: target.c:704
int target_get_gdb_reg_list(struct target *target, struct reg **reg_list[], int *reg_list_size, enum target_register_class reg_class)
Obtain the registers for GDB.
Definition: target.c:1378
static const struct nvp nvp_error_target[]
Definition: target.c:139
int target_call_timer_callbacks(void)
Definition: target.c:1888
int target_write_u64(struct target *target, target_addr_t address, uint64_t value)
Definition: target.c:2629
static struct target_event_callback * target_event_callbacks
Definition: target.c:116
static COMMAND_HELPER(parse_load_image_command, struct image *image, target_addr_t *min_address, target_addr_t *max_address)
Definition: target.c:3587
struct target * get_current_target_or_null(struct command_context *cmd_ctx)
Definition: target.c:479
static void target_split_working_area(struct working_area *area, uint32_t size)
Definition: target.c:1918
const char * target_debug_reason_str(enum target_debug_reason reason)
Definition: target.c:6776
static int target_init(struct command_context *cmd_ctx)
Definition: target.c:1546
int target_hit_watchpoint(struct target *target, struct watchpoint **hit_watchpoint)
Find out the just hit watchpoint for target.
Definition: target.c:1353
int target_call_reset_callbacks(struct target *target, enum target_reset_mode reset_mode)
Definition: target.c:1799
uint32_t target_get_working_area_avail(struct target *target)
Definition: target.c:2174
target_cfg_param
Definition: target.c:4843
@ TCFG_GDB_MAX_CONNECTIONS
Definition: target.c:4857
@ TCFG_CHAIN_POSITION
Definition: target.c:4852
@ TCFG_GDB_PORT
Definition: target.c:4856
@ TCFG_WORK_AREA_VIRT
Definition: target.c:4846
@ TCFG_TYPE
Definition: target.c:4844
@ TCFG_WORK_AREA_BACKUP
Definition: target.c:4849
@ TCFG_RTOS
Definition: target.c:4854
@ TCFG_DBGBASE
Definition: target.c:4853
@ TCFG_WORK_AREA_PHYS
Definition: target.c:4847
@ TCFG_ENDIAN
Definition: target.c:4850
@ TCFG_WORK_AREA_SIZE
Definition: target.c:4848
@ TCFG_EVENT
Definition: target.c:4845
@ TCFG_DEFER_EXAMINE
Definition: target.c:4855
@ TCFG_COREID
Definition: target.c:4851
int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
Definition: target.c:2070
static const struct command_registration target_instance_command_handlers[]
Definition: target.c:5521
bool get_target_reset_nag(void)
Definition: target.c:6270
unsigned int target_data_bits(struct target *target)
Return the number of data bits this target supports.
Definition: target.c:1470
static int find_target(struct command_invocation *cmd, const char *name)
Definition: target.c:2791
int target_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
Remove the watchpoint for target.
Definition: target.c:1348
const char * target_event_name(enum target_event event)
Return the name of a target event enumeration value.
Definition: target.c:284
int target_write_u32(struct target *target, target_addr_t address, uint32_t value)
Definition: target.c:2650
int target_examine_one(struct target *target)
Examine the specified target, letting it perform any Initialisation that requires JTAG access.
Definition: target.c:682
static int power_dropout
Definition: target.c:2856
const char * target_state_name(const struct target *t)
Return the name of this targets current state.
Definition: target.c:269
int(* target_write_fn)(struct target *target, target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
Definition: target.c:3476
static void print_wa_layout(struct target *target)
Definition: target.c:1905
#define DEFAULT_HALT_TIMEOUT
Definition: target.c:54
int target_poll(struct target *target)
Definition: target.c:486
static int target_call_timer_callbacks_check_time(int checktime)
Definition: target.c:1840
static int sense_handler(void)
Definition: target.c:2864
static int target_timer_callback_periodic_restart(struct target_timer_callback *cb, int64_t *now)
Definition: target.c:1822
int target_free_working_area(struct target *target, struct working_area *area)
Free a working area.
Definition: target.c:2128
static int srst_asserted
Definition: target.c:2857
static int fastload_num
Definition: target.c:6100
static const struct nvp nvp_target_endian[]
Definition: target.c:240
int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
Definition: target.c:1976
int target_register_timer_callback(int(*callback)(void *priv), unsigned int time_ms, enum target_timer_type type, void *priv)
The period is very approximate, the callback can happen much more often or much more rarely than spec...
Definition: target.c:1668
static struct nvp nvp_config_opts[]
Definition: target.c:4860
int target_read_u16(struct target *target, target_addr_t address, uint16_t *value)
Definition: target.c:2583
int target_run_flash_async_algorithm(struct target *target, const uint8_t *buffer, uint32_t count, int block_size, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_params, uint32_t buffer_start, uint32_t buffer_size, uint32_t entry_point, uint32_t exit_point, void *arch_info)
Streams data to a circular buffer on target intended for consumption by code running asynchronously o...
Definition: target.c:940
void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
Definition: target.c:352
static const int polling_interval
Definition: target.c:121
void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
Definition: target.c:418
static void target_reset_examined(struct target *target)
Reset the examined flag for the given target.
Definition: target.c:663
int target_add_context_breakpoint(struct target *target, struct breakpoint *breakpoint)
Add the ContextID breakpoint for target.
Definition: target.c:1313
static int target_init_one(struct command_context *cmd_ctx, struct target *target)
Definition: target.c:1486
static int run_power_dropout
Definition: target.c:2860
int target_resume(struct target *target, bool current, target_addr_t address, bool handle_breakpoints, bool debug_execution)
Make the target (re)start executing using its saved execution context (possibly with some modificatio...
Definition: target.c:565
int target_read_u32(struct target *target, target_addr_t address, uint32_t *value)
Definition: target.c:2559
uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
Definition: target.c:343
int target_read_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
Read count items of size bytes from the memory of target at the address given.
Definition: target.c:1247
bool target_has_event_action(const struct target *target, enum target_event event)
Returns true only if the target has a handler for the specified event.
Definition: target.c:4832
static const struct command_registration target_exec_command_handlers[]
Definition: target.c:6493
void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
Definition: target.c:394
static const struct nvp nvp_reset_modes[]
Definition: target.c:248
const char * debug_reason_name(const struct target *t)
Definition: target.c:256
static int default_check_reset(struct target *target)
Definition: target.c:675
void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
Definition: target.c:434
static struct fast_load * fastload
Definition: target.c:6101
int target_register_reset_callback(int(*callback)(struct target *target, enum target_reset_mode reset_mode, void *priv), void *priv)
Definition: target.c:1624
uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
Definition: target.c:334
static int run_srst_asserted
Definition: target.c:2861
void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
Definition: target.c:402
int64_t target_timer_next_event(void)
Returns when the next registered event will take place.
Definition: target.c:1899
verify_mode
Definition: target.c:3765
@ IMAGE_TEST
Definition: target.c:3766
@ IMAGE_VERIFY
Definition: target.c:3767
@ IMAGE_CHECKSUM_ONLY
Definition: target.c:3768
void target_handle_md_output(struct command_invocation *cmd, struct target *target, target_addr_t address, unsigned int size, unsigned int count, const uint8_t *buffer)
Definition: target.c:3354
int target_write_phys_u16(struct target *target, target_addr_t address, uint16_t value)
Definition: target.c:2752
static void free_fastload(void)
Definition: target.c:6103
static int handle_target(void *priv)
Definition: target.c:2917
const char * target_get_gdb_arch(const struct target *target)
Obtain the architecture for GDB.
Definition: target.c:1371
static int target_restore_working_area(struct target *target, struct working_area *area)
Definition: target.c:2081
nvp_assert
Definition: target.c:124
@ NVP_ASSERT
Definition: target.c:126
@ NVP_DEASSERT
Definition: target.c:125
static int target_gdb_fileio_end_default(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
Definition: target.c:2293
int target_wait_algorithm(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_params, target_addr_t exit_point, unsigned int timeout_ms, void *arch_info)
Waits for an algorithm started with target_start_algorithm() to complete.
Definition: target.c:868
static int target_fill_mem(struct target *target, target_addr_t address, target_write_fn fn, unsigned int data_size, uint64_t b, unsigned int c)
Definition: target.c:3479
static void target_destroy(struct target *target)
Definition: target.c:2192
int target_wait_state(struct target *target, enum target_state state, unsigned int ms)
Definition: target.c:3222
int target_step(struct target *target, bool current, target_addr_t address, bool handle_breakpoints)
Step the target.
Definition: target.c:1420
int target_examine(void)
Definition: target.c:721
int target_register_trace_callback(int(*callback)(struct target *target, size_t len, uint8_t *data, void *priv), void *priv)
Definition: target.c:1646
struct target * get_current_target(struct command_context *cmd_ctx)
Definition: target.c:467
void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
Definition: target.c:426
static int handle_bp_command_set(struct command_invocation *cmd, target_addr_t addr, uint32_t asid, unsigned int length, int hw)
Definition: target.c:3960
static void write_gmon(uint32_t *samples, uint32_t sample_num, const char *filename, bool with_range, uint32_t start_address, uint32_t end_address, struct target *target, uint32_t duration_ms)
Definition: target.c:4216
static int identity_virt2phys(struct target *target, target_addr_t virtual, target_addr_t *physical)
Definition: target.c:646
static int target_register_user_commands(struct command_context *cmd_ctx)
Definition: target.c:6761
static void append_to_list_all_targets(struct target *target)
Definition: target.c:306
void target_handle_event(struct target *target, enum target_event e)
Definition: target.c:4668
uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
Definition: target.c:325
static int target_soft_reset_halt(struct target *target)
Definition: target.c:751
const char * target_type_name(const struct target *target)
Get the target type name.
Definition: target.c:746
static int no_mmu(struct target *target, int *enabled)
Definition: target.c:653
int target_call_trace_callbacks(struct target *target, size_t len, uint8_t *data)
Definition: target.c:1812
static int target_process_reset(struct command_invocation *cmd, enum target_reset_mode reset_mode)
Definition: target.c:603
static const char * target_strerror_safe(int err)
Definition: target.c:154
static int64_t target_timer_next_event_value
Definition: target.c:118
int target_start_algorithm(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_params, target_addr_t entry_point, target_addr_t exit_point, void *arch_info)
Executes a target-specific native code algorithm and leaves it running.
Definition: target.c:824
static void write_data(FILE *f, const void *data, size_t len)
Definition: target.c:4193
void target_quit(void)
Free all the resources allocated by targets and the target layer.
Definition: target.c:2239
int target_write_phys_u8(struct target *target, target_addr_t address, uint8_t value)
Definition: target.c:2773
static struct target_type * target_types[]
Definition: target.c:73
int target_read_u64(struct target *target, target_addr_t address, uint64_t *value)
Definition: target.c:2535
const char * target_reset_mode_name(enum target_reset_mode reset_mode)
Return the name of a target reset reason enumeration value.
Definition: target.c:295
static void target_free_all_working_areas_restore(struct target *target, int restore)
Definition: target.c:2136
target_debug_reason
Definition: target.h:71
@ DBG_REASON_WPTANDBKPT
Definition: target.h:75
@ DBG_REASON_UNDEFINED
Definition: target.h:80
@ DBG_REASON_EXIT
Definition: target.h:78
@ DBG_REASON_NOTHALTED
Definition: target.h:77
@ DBG_REASON_DBGRQ
Definition: target.h:72
@ DBG_REASON_SINGLESTEP
Definition: target.h:76
@ DBG_REASON_WATCHPOINT
Definition: target.h:74
@ DBG_REASON_EXC_CATCH
Definition: target.h:79
@ DBG_REASON_BREAKPOINT
Definition: target.h:73
target_reset_mode
Definition: target.h:64
@ RESET_RUN
Definition: target.h:66
@ RESET_HALT
Definition: target.h:67
@ RESET_UNKNOWN
Definition: target.h:65
@ RESET_INIT
Definition: target.h:68
target_register_class
Definition: target.h:113
#define ERROR_TARGET_NOT_HALTED
Definition: target.h:786
#define ERROR_TARGET_INIT_FAILED
Definition: target.h:784
static bool target_was_examined(const struct target *target)
Definition: target.h:432
#define ERROR_TARGET_UNALIGNED_ACCESS
Definition: target.h:788
#define ERROR_TARGET_INVALID
Definition: target.h:783
target_timer_type
Definition: target.h:321
@ TARGET_TIMER_TYPE_PERIODIC
Definition: target.h:323
target_event
Definition: target.h:243
@ TARGET_EVENT_DEBUG_RESUMED
Definition: target.h:275
@ TARGET_EVENT_EXAMINE_START
Definition: target.h:277
@ TARGET_EVENT_RESET_START
Definition: target.h:265
@ TARGET_EVENT_SEMIHOSTING_USER_CMD_0X106
Definition: target.h:297
@ TARGET_EVENT_GDB_FLASH_WRITE_END
Definition: target.h:287
@ TARGET_EVENT_RESET_END
Definition: target.h:272
@ TARGET_EVENT_RESET_ASSERT_POST
Definition: target.h:268
@ TARGET_EVENT_RESET_DEASSERT_POST
Definition: target.h:270
@ TARGET_EVENT_HALTED
Definition: target.h:255
@ TARGET_EVENT_RESUMED
Definition: target.h:256
@ TARGET_EVENT_SEMIHOSTING_USER_CMD_0X102
Definition: target.h:293
@ TARGET_EVENT_SEMIHOSTING_USER_CMD_0X107
Definition: target.h:298
@ TARGET_EVENT_SEMIHOSTING_USER_CMD_0X105
Definition: target.h:296
@ TARGET_EVENT_EXAMINE_FAIL
Definition: target.h:278
@ TARGET_EVENT_GDB_START
Definition: target.h:262
@ TARGET_EVENT_EXAMINE_END
Definition: target.h:279
@ TARGET_EVENT_SEMIHOSTING_USER_CMD_0X104
Definition: target.h:295
@ TARGET_EVENT_RESET_INIT
Definition: target.h:271
@ TARGET_EVENT_GDB_END
Definition: target.h:263
@ TARGET_EVENT_RESET_DEASSERT_PRE
Definition: target.h:269
@ TARGET_EVENT_GDB_FLASH_ERASE_START
Definition: target.h:284
@ TARGET_EVENT_SEMIHOSTING_USER_CMD_0X103
Definition: target.h:294
@ TARGET_EVENT_DEBUG_HALTED
Definition: target.h:274
@ TARGET_EVENT_RESET_ASSERT_PRE
Definition: target.h:266
@ TARGET_EVENT_RESET_ASSERT
Definition: target.h:267
@ TARGET_EVENT_GDB_FLASH_WRITE_START
Definition: target.h:286
@ TARGET_EVENT_RESUME_START
Definition: target.h:257
@ TARGET_EVENT_STEP_END
Definition: target.h:260
@ TARGET_EVENT_STEP_START
Definition: target.h:259
@ TARGET_EVENT_GDB_ATTACH
Definition: target.h:281
@ TARGET_EVENT_SEMIHOSTING_USER_CMD_0X100
Definition: target.h:291
@ TARGET_EVENT_SEMIHOSTING_USER_CMD_0X101
Definition: target.h:292
@ TARGET_EVENT_RESUME_END
Definition: target.h:258
@ TARGET_EVENT_GDB_FLASH_ERASE_END
Definition: target.h:285
@ TARGET_EVENT_GDB_DETACH
Definition: target.h:282
@ TARGET_EVENT_TRACE_CONFIG
Definition: target.h:289
@ TARGET_EVENT_GDB_HALT
Definition: target.h:254
static const char * target_name(const struct target *target)
Returns the instance-specific name of the specified target.
Definition: target.h:236
target_state
Definition: target.h:55
@ TARGET_RESET
Definition: target.h:59
@ TARGET_DEBUG_RUNNING
Definition: target.h:60
@ TARGET_UNKNOWN
Definition: target.h:56
@ TARGET_UNAVAILABLE
Definition: target.h:61
@ TARGET_HALTED
Definition: target.h:58
@ TARGET_RUNNING
Definition: target.h:57
#define ERROR_TARGET_NOT_EXAMINED
Definition: target.h:793
@ TARGET_BIG_ENDIAN
Definition: target.h:85
@ TARGET_ENDIAN_UNKNOWN
Definition: target.h:84
@ TARGET_LITTLE_ENDIAN
Definition: target.h:85
#define TARGET_DEFAULT_POLLING_INTERVAL
Definition: target.h:802
#define ERROR_TARGET_TIMEOUT
Definition: target.h:785
#define ERROR_TARGET_RESOURCE_NOT_AVAILABLE
Definition: target.h:790
static void target_set_examined(struct target *target)
Sets the examined flag for the given target.
Definition: target.h:439
#define ERROR_TARGET_NOT_RUNNING
Definition: target.h:792
#define ERROR_TARGET_DATA_ABORT
Definition: target.h:789
#define ERROR_TARGET_FAILURE
Definition: target.h:787
#define ERROR_TARGET_TRANSLATION_FAULT
Definition: target.h:791
int target_request_register_commands(struct command_context *cmd_ctx)
struct target_type testee_target
Definition: testee.c:53
struct target_type xtensa_chip_target
Methods for generic example of Xtensa-based chip-level targets.
Definition: xtensa_chip.c:151
struct target_type xscale_target
Definition: xscale.c:3705
float duration_elapsed(const struct duration *duration)
Definition: time_support.c:83
int timeval_compare(const struct timeval *x, const struct timeval *y)
Definition: time_support.c:55
int timeval_add_time(struct timeval *result, long sec, long usec)
Definition: time_support.c:41
int duration_measure(struct duration *duration)
Update the duration->elapsed field to finish the duration measurement.
Definition: time_support.c:74
int duration_start(struct duration *duration)
Update the duration->start field to start the duration measurement.
Definition: time_support.c:69
float duration_kbps(const struct duration *duration, size_t count)
Definition: time_support.c:90
int64_t timeval_ms(void)
int trace_register_commands(struct command_context *cmd_ctx)
Definition: trace.c:159
struct transport * get_current_transport(void)
Returns the transport currently being used by this debug or programming session.
Definition: transport.c:252
static void h_u32_to_be(uint8_t *buf, uint32_t val)
Definition: types.h:186
static uint64_t le_to_h_u64(const uint8_t *buf)
Definition: types.h:100
static uint32_t be_to_h_u24(const uint8_t *buf)
Definition: types.h:144
static void h_u16_to_be(uint8_t *buf, uint16_t val)
Definition: types.h:214
static uint64_t be_to_h_u64(const uint8_t *buf)
Definition: types.h:127
static uint16_t le_to_h_u16(const uint8_t *buf)
Definition: types.h:122
static uint32_t le_to_h_u24(const uint8_t *buf)
Definition: types.h:117
#define TARGET_ADDR_FMT
Definition: types.h:342
static void h_u32_to_le(uint8_t *buf, uint32_t val)
Definition: types.h:178
#define DIV_ROUND_UP(m, n)
Rounds m up to the nearest multiple of n using division.
Definition: types.h:79
static uint32_t be_to_h_u32(const uint8_t *buf)
Definition: types.h:139
uint64_t target_addr_t
Definition: types.h:335
static void h_u24_to_le(uint8_t *buf, unsigned int val)
Definition: types.h:194
static void h_u24_to_be(uint8_t *buf, unsigned int val)
Definition: types.h:201
static uint16_t be_to_h_u16(const uint8_t *buf)
Definition: types.h:149
static void h_u16_to_le(uint8_t *buf, uint16_t val)
Definition: types.h:208
static uint32_t le_to_h_u32(const uint8_t *buf)
Definition: types.h:112
static void h_u64_to_be(uint8_t *buf, uint64_t val)
Definition: types.h:166
static void h_u64_to_le(uint8_t *buf, uint64_t val)
Definition: types.h:154
#define NULL
Definition: usb.h:16
uint8_t cmd
Definition: vdebug.c:1
uint8_t offset[4]
Definition: vdebug.c:9
uint8_t state[4]
Definition: vdebug.c:21
uint8_t count[4]
Definition: vdebug.c:22