OpenOCD
cortex_a.c
Go to the documentation of this file.
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 
3 /***************************************************************************
4  * Copyright (C) 2005 by Dominic Rath *
5  * Dominic.Rath@gmx.de *
6  * *
7  * Copyright (C) 2006 by Magnus Lundin *
8  * lundin@mlu.mine.nu *
9  * *
10  * Copyright (C) 2008 by Spencer Oliver *
11  * spen@spen-soft.co.uk *
12  * *
13  * Copyright (C) 2009 by Dirk Behme *
14  * dirk.behme@gmail.com - copy from cortex_m3 *
15  * *
16  * Copyright (C) 2010 Øyvind Harboe *
17  * oyvind.harboe@zylin.com *
18  * *
19  * Copyright (C) ST-Ericsson SA 2011 *
20  * michel.jaouen@stericsson.com : smp minimum support *
21  * *
22  * Copyright (C) Broadcom 2012 *
23  * ehunter@broadcom.com : Cortex-R4 support *
24  * *
25  * Copyright (C) 2013 Kamal Dasu *
26  * kdasu.kdev@gmail.com *
27  * *
28  * Copyright (C) 2016 Chengyu Zheng *
29  * chengyu.zheng@polimi.it : watchpoint support *
30  * *
31  * Cortex-A8(tm) TRM, ARM DDI 0344H *
32  * Cortex-A9(tm) TRM, ARM DDI 0407F *
33  * Cortex-A4(tm) TRM, ARM DDI 0363E *
34  * Cortex-A15(tm)TRM, ARM DDI 0438C *
35  * *
36  ***************************************************************************/
37 
38 #ifdef HAVE_CONFIG_H
39 #include "config.h"
40 #endif
41 
42 #include "breakpoints.h"
43 #include "cortex_a.h"
44 #include "register.h"
45 #include "armv7a_mmu.h"
46 #include "target_request.h"
47 #include "target_type.h"
48 #include "arm_coresight.h"
49 #include "arm_opcodes.h"
50 #include "arm_semihosting.h"
51 #include "jtag/interface.h"
52 #include "transport/transport.h"
53 #include "smp.h"
54 #include <helper/bits.h>
55 #include <helper/nvp.h>
56 #include <helper/time_support.h>
57 
58 static int cortex_a_poll(struct target *target);
59 static int cortex_a_debug_entry(struct target *target);
60 static int cortex_a_restore_context(struct target *target, bool bpwp);
61 static int cortex_a_set_breakpoint(struct target *target,
62  struct breakpoint *breakpoint, uint8_t matchmode);
64  struct breakpoint *breakpoint, uint8_t matchmode);
66  struct breakpoint *breakpoint);
67 static int cortex_a_unset_breakpoint(struct target *target,
68  struct breakpoint *breakpoint);
69 static int cortex_a_wait_dscr_bits(struct target *target, uint32_t mask,
70  uint32_t value, uint32_t *dscr);
71 static int cortex_a_mmu(struct target *target, int *enabled);
72 static int cortex_a_mmu_modify(struct target *target, int enable);
73 static int cortex_a_virt2phys(struct target *target,
74  target_addr_t virt, target_addr_t *phys);
75 static int cortex_a_read_cpu_memory(struct target *target,
76  uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
77 
78 static unsigned int ilog2(unsigned int x)
79 {
80  unsigned int y = 0;
81  x /= 2;
82  while (x) {
83  ++y;
84  x /= 2;
85  }
86  return y;
87 }
88 
89 /* restore cp15_control_reg at resume */
91 {
92  int retval = ERROR_OK;
93  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
94  struct armv7a_common *armv7a = target_to_armv7a(target);
95 
96  if (cortex_a->cp15_control_reg != cortex_a->cp15_control_reg_curr) {
97  cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
98  /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg); */
99  retval = armv7a->arm.mcr(target, 15,
100  0, 0, /* op1, op2 */
101  1, 0, /* CRn, CRm */
102  cortex_a->cp15_control_reg);
103  }
104  return retval;
105 }
106 
107 /*
108  * Set up ARM core for memory access.
109  * If !phys_access, switch to SVC mode and make sure MMU is on
110  * If phys_access, switch off mmu
111  */
112 static int cortex_a_prep_memaccess(struct target *target, int phys_access)
113 {
114  struct armv7a_common *armv7a = target_to_armv7a(target);
115  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
116  int mmu_enabled = 0;
117 
118  if (phys_access == 0) {
120  cortex_a_mmu(target, &mmu_enabled);
121  if (mmu_enabled)
123  if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
124  /* overwrite DACR to all-manager */
125  armv7a->arm.mcr(target, 15,
126  0, 0, 3, 0,
127  0xFFFFFFFF);
128  }
129  } else {
130  cortex_a_mmu(target, &mmu_enabled);
131  if (mmu_enabled)
133  }
134  return ERROR_OK;
135 }
136 
137 /*
138  * Restore ARM core after memory access.
139  * If !phys_access, switch to previous mode
140  * If phys_access, restore MMU setting
141  */
142 static int cortex_a_post_memaccess(struct target *target, int phys_access)
143 {
144  struct armv7a_common *armv7a = target_to_armv7a(target);
145  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
146 
147  if (phys_access == 0) {
148  if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
149  /* restore */
150  armv7a->arm.mcr(target, 15,
151  0, 0, 3, 0,
152  cortex_a->cp15_dacr_reg);
153  }
155  } else {
156  int mmu_enabled = 0;
157  cortex_a_mmu(target, &mmu_enabled);
158  if (mmu_enabled)
160  }
161  return ERROR_OK;
162 }
163 
164 
165 /* modify cp15_control_reg in order to enable or disable mmu for :
166  * - virt2phys address conversion
167  * - read or write memory in phys or virt address */
168 static int cortex_a_mmu_modify(struct target *target, int enable)
169 {
170  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
171  struct armv7a_common *armv7a = target_to_armv7a(target);
172  int retval = ERROR_OK;
173  int need_write = 0;
174 
175  if (enable) {
176  /* if mmu enabled at target stop and mmu not enable */
177  if (!(cortex_a->cp15_control_reg & 0x1U)) {
178  LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
179  return ERROR_FAIL;
180  }
181  if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0) {
182  cortex_a->cp15_control_reg_curr |= 0x1U;
183  need_write = 1;
184  }
185  } else {
186  if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0x1U) {
187  cortex_a->cp15_control_reg_curr &= ~0x1U;
188  need_write = 1;
189  }
190  }
191 
192  if (need_write) {
193  LOG_DEBUG("%s, writing cp15 ctrl: %" PRIx32,
194  enable ? "enable mmu" : "disable mmu",
195  cortex_a->cp15_control_reg_curr);
196 
197  retval = armv7a->arm.mcr(target, 15,
198  0, 0, /* op1, op2 */
199  1, 0, /* CRn, CRm */
200  cortex_a->cp15_control_reg_curr);
201  }
202  return retval;
203 }
204 
205 /*
206  * Cortex-A Basic debug access, very low level assumes state is saved
207  */
209 {
210  struct armv7a_common *armv7a = target_to_armv7a(target);
211  uint32_t dscr;
212  int retval;
213 
214  /* lock memory-mapped access to debug registers to prevent
215  * software interference */
216  retval = mem_ap_write_u32(armv7a->debug_ap,
217  armv7a->debug_base + CPUDBG_LOCKACCESS, 0);
218  if (retval != ERROR_OK)
219  return retval;
220 
221  /* Disable cacheline fills and force cache write-through in debug state */
222  retval = mem_ap_write_u32(armv7a->debug_ap,
223  armv7a->debug_base + CPUDBG_DSCCR, 0);
224  if (retval != ERROR_OK)
225  return retval;
226 
227  /* Disable TLB lookup and refill/eviction in debug state */
228  retval = mem_ap_write_u32(armv7a->debug_ap,
229  armv7a->debug_base + CPUDBG_DSMCR, 0);
230  if (retval != ERROR_OK)
231  return retval;
232 
233  retval = dap_run(armv7a->debug_ap->dap);
234  if (retval != ERROR_OK)
235  return retval;
236 
237  /* Enabling of instruction execution in debug mode is done in debug_entry code */
238 
239  /* Resync breakpoint registers */
240 
241  /* Enable halt for breakpoint, watchpoint and vector catch */
242  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
243  armv7a->debug_base + CPUDBG_DSCR, &dscr);
244  if (retval != ERROR_OK)
245  return retval;
246  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
247  armv7a->debug_base + CPUDBG_DSCR, dscr | DSCR_HALT_DBG_MODE);
248  if (retval != ERROR_OK)
249  return retval;
250 
251  /* Since this is likely called from init or reset, update target state information*/
252  return cortex_a_poll(target);
253 }
254 
255 static int cortex_a_wait_instrcmpl(struct target *target, uint32_t *dscr, bool force)
256 {
257  /* Waits until InstrCmpl_l becomes 1, indicating instruction is done.
258  * Writes final value of DSCR into *dscr. Pass force to force always
259  * reading DSCR at least once. */
260  struct armv7a_common *armv7a = target_to_armv7a(target);
261  int retval;
262 
263  if (force) {
264  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
265  armv7a->debug_base + CPUDBG_DSCR, dscr);
266  if (retval != ERROR_OK) {
267  LOG_ERROR("Could not read DSCR register");
268  return retval;
269  }
270  }
271 
273  if (retval != ERROR_OK)
274  LOG_ERROR("Error waiting for InstrCompl=1");
275  return retval;
276 }
277 
278 /* To reduce needless round-trips, pass in a pointer to the current
279  * DSCR value. Initialize it to zero if you just need to know the
280  * value on return from this function; or DSCR_INSTR_COMP if you
281  * happen to know that no instruction is pending.
282  */
283 static int cortex_a_exec_opcode(struct target *target,
284  uint32_t opcode, uint32_t *dscr_p)
285 {
286  uint32_t dscr;
287  int retval;
288  struct armv7a_common *armv7a = target_to_armv7a(target);
289 
290  dscr = dscr_p ? *dscr_p : 0;
291 
292  LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
293 
294  /* Wait for InstrCompl bit to be set */
295  retval = cortex_a_wait_instrcmpl(target, dscr_p, false);
296  if (retval != ERROR_OK)
297  return retval;
298 
299  retval = mem_ap_write_u32(armv7a->debug_ap,
300  armv7a->debug_base + CPUDBG_ITR, opcode);
301  if (retval != ERROR_OK)
302  return retval;
303 
304  /* Wait for InstrCompl bit to be set */
305  retval = cortex_a_wait_instrcmpl(target, &dscr, true);
306  if (retval != ERROR_OK) {
307  LOG_ERROR("Error waiting for cortex_a_exec_opcode");
308  return retval;
309  }
310 
311  if (dscr_p)
312  *dscr_p = dscr;
313 
314  return retval;
315 }
316 
317 /*
318  * Cortex-A implementation of Debug Programmer's Model
319  *
320  * NOTE the invariant: these routines return with DSCR_INSTR_COMP set,
321  * so there's no need to poll for it before executing an instruction.
322  *
323  * NOTE that in several of these cases the "stall" mode might be useful.
324  * It'd let us queue a few operations together... prepare/finish might
325  * be the places to enable/disable that mode.
326  */
327 
328 static inline struct cortex_a_common *dpm_to_a(struct arm_dpm *dpm)
329 {
330  return container_of(dpm, struct cortex_a_common, armv7a_common.dpm);
331 }
332 
333 static int cortex_a_write_dcc(struct cortex_a_common *a, uint32_t data)
334 {
335  LOG_DEBUG("write DCC 0x%08" PRIx32, data);
338 }
339 
340 static int cortex_a_read_dcc(struct cortex_a_common *a, uint32_t *data,
341  uint32_t *dscr_p)
342 {
343  uint32_t dscr = DSCR_INSTR_COMP;
344  int retval;
345 
346  if (dscr_p)
347  dscr = *dscr_p;
348 
349  /* Wait for DTRRXfull */
352  if (retval != ERROR_OK) {
353  LOG_ERROR("Error waiting for read dcc");
354  return retval;
355  }
356 
359  if (retval != ERROR_OK)
360  return retval;
361  /* LOG_DEBUG("read DCC 0x%08" PRIx32, *data); */
362 
363  if (dscr_p)
364  *dscr_p = dscr;
365 
366  return retval;
367 }
368 
369 static int cortex_a_dpm_prepare(struct arm_dpm *dpm)
370 {
371  struct cortex_a_common *a = dpm_to_a(dpm);
372  uint32_t dscr;
373  int retval;
374 
375  /* set up invariant: INSTR_COMP is set after ever DPM operation */
376  retval = cortex_a_wait_instrcmpl(dpm->arm->target, &dscr, true);
377  if (retval != ERROR_OK) {
378  LOG_ERROR("Error waiting for dpm prepare");
379  return retval;
380  }
381 
382  /* this "should never happen" ... */
383  if (dscr & DSCR_DTR_RX_FULL) {
384  LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
385  /* Clear DCCRX */
386  retval = cortex_a_exec_opcode(
388  ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
389  &dscr);
390  if (retval != ERROR_OK)
391  return retval;
392  }
393 
394  return retval;
395 }
396 
397 static int cortex_a_dpm_finish(struct arm_dpm *dpm)
398 {
399  /* REVISIT what could be done here? */
400  return ERROR_OK;
401 }
402 
403 static int cortex_a_instr_write_data_dcc(struct arm_dpm *dpm,
404  uint32_t opcode, uint32_t data)
405 {
406  struct cortex_a_common *a = dpm_to_a(dpm);
407  int retval;
408  uint32_t dscr = DSCR_INSTR_COMP;
409 
410  retval = cortex_a_write_dcc(a, data);
411  if (retval != ERROR_OK)
412  return retval;
413 
414  return cortex_a_exec_opcode(
416  opcode,
417  &dscr);
418 }
419 
421  uint8_t rt, uint32_t data)
422 {
423  struct cortex_a_common *a = dpm_to_a(dpm);
424  uint32_t dscr = DSCR_INSTR_COMP;
425  int retval;
426 
427  if (rt > 15)
428  return ERROR_TARGET_INVALID;
429 
430  retval = cortex_a_write_dcc(a, data);
431  if (retval != ERROR_OK)
432  return retval;
433 
434  /* DCCRX to Rt, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15 */
435  return cortex_a_exec_opcode(
437  ARMV4_5_MRC(14, 0, rt, 0, 5, 0),
438  &dscr);
439 }
440 
441 static int cortex_a_instr_write_data_r0(struct arm_dpm *dpm,
442  uint32_t opcode, uint32_t data)
443 {
444  struct cortex_a_common *a = dpm_to_a(dpm);
445  uint32_t dscr = DSCR_INSTR_COMP;
446  int retval;
447 
448  retval = cortex_a_instr_write_data_rt_dcc(dpm, 0, data);
449  if (retval != ERROR_OK)
450  return retval;
451 
452  /* then the opcode, taking data from R0 */
453  retval = cortex_a_exec_opcode(
455  opcode,
456  &dscr);
457 
458  return retval;
459 }
460 
462  uint32_t opcode, uint64_t data)
463 {
464  struct cortex_a_common *a = dpm_to_a(dpm);
465  uint32_t dscr = DSCR_INSTR_COMP;
466  int retval;
467 
468  retval = cortex_a_instr_write_data_rt_dcc(dpm, 0, data & 0xffffffffULL);
469  if (retval != ERROR_OK)
470  return retval;
471 
472  retval = cortex_a_instr_write_data_rt_dcc(dpm, 1, data >> 32);
473  if (retval != ERROR_OK)
474  return retval;
475 
476  /* then the opcode, taking data from R0, R1 */
478  opcode,
479  &dscr);
480  return retval;
481 }
482 
483 static int cortex_a_instr_cpsr_sync(struct arm_dpm *dpm)
484 {
485  struct target *target = dpm->arm->target;
486  uint32_t dscr = DSCR_INSTR_COMP;
487 
488  /* "Prefetch flush" after modifying execution status in CPSR */
490  ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
491  &dscr);
492 }
493 
494 static int cortex_a_instr_read_data_dcc(struct arm_dpm *dpm,
495  uint32_t opcode, uint32_t *data)
496 {
497  struct cortex_a_common *a = dpm_to_a(dpm);
498  int retval;
499  uint32_t dscr = DSCR_INSTR_COMP;
500 
501  /* the opcode, writing data to DCC */
502  retval = cortex_a_exec_opcode(
504  opcode,
505  &dscr);
506  if (retval != ERROR_OK)
507  return retval;
508 
509  return cortex_a_read_dcc(a, data, &dscr);
510 }
511 
513  uint8_t rt, uint32_t *data)
514 {
515  struct cortex_a_common *a = dpm_to_a(dpm);
516  uint32_t dscr = DSCR_INSTR_COMP;
517  int retval;
518 
519  if (rt > 15)
520  return ERROR_TARGET_INVALID;
521 
522  retval = cortex_a_exec_opcode(
524  ARMV4_5_MCR(14, 0, rt, 0, 5, 0),
525  &dscr);
526  if (retval != ERROR_OK)
527  return retval;
528 
529  return cortex_a_read_dcc(a, data, &dscr);
530 }
531 
532 static int cortex_a_instr_read_data_r0(struct arm_dpm *dpm,
533  uint32_t opcode, uint32_t *data)
534 {
535  struct cortex_a_common *a = dpm_to_a(dpm);
536  uint32_t dscr = DSCR_INSTR_COMP;
537  int retval;
538 
539  /* the opcode, writing data to R0 */
540  retval = cortex_a_exec_opcode(
542  opcode,
543  &dscr);
544  if (retval != ERROR_OK)
545  return retval;
546 
547  /* write R0 to DCC */
548  return cortex_a_instr_read_data_rt_dcc(dpm, 0, data);
549 }
550 
552  uint32_t opcode, uint64_t *data)
553 {
554  uint32_t lo, hi;
555  int retval;
556 
557  /* the opcode, writing data to RO, R1 */
558  retval = cortex_a_instr_read_data_r0(dpm, opcode, &lo);
559  if (retval != ERROR_OK)
560  return retval;
561 
562  *data = lo;
563 
564  /* write R1 to DCC */
565  retval = cortex_a_instr_read_data_rt_dcc(dpm, 1, &hi);
566  if (retval != ERROR_OK)
567  return retval;
568 
569  *data |= (uint64_t)hi << 32;
570 
571  return retval;
572 }
573 
574 static int cortex_a_bpwp_enable(struct arm_dpm *dpm, unsigned int index_t,
575  uint32_t addr, uint32_t control)
576 {
577  struct cortex_a_common *a = dpm_to_a(dpm);
578  uint32_t vr = a->armv7a_common.debug_base;
579  uint32_t cr = a->armv7a_common.debug_base;
580  int retval;
581 
582  switch (index_t) {
583  case 0 ... 15: /* breakpoints */
584  vr += CPUDBG_BVR_BASE;
585  cr += CPUDBG_BCR_BASE;
586  break;
587  case 16 ... 31: /* watchpoints */
588  vr += CPUDBG_WVR_BASE;
589  cr += CPUDBG_WCR_BASE;
590  index_t -= 16;
591  break;
592  default:
593  return ERROR_FAIL;
594  }
595  vr += 4 * index_t;
596  cr += 4 * index_t;
597 
598  LOG_DEBUG("A: bpwp enable, vr %08" PRIx32 " cr %08" PRIx32, vr, cr);
599 
601  vr, addr);
602  if (retval != ERROR_OK)
603  return retval;
605  cr, control);
606  return retval;
607 }
608 
609 static int cortex_a_bpwp_disable(struct arm_dpm *dpm, unsigned int index_t)
610 {
611  struct cortex_a_common *a = dpm_to_a(dpm);
612  uint32_t cr;
613 
614  switch (index_t) {
615  case 0 ... 15:
617  break;
618  case 16 ... 31:
620  index_t -= 16;
621  break;
622  default:
623  return ERROR_FAIL;
624  }
625  cr += 4 * index_t;
626 
627  LOG_DEBUG("A: bpwp disable, cr %08" PRIx32, cr);
628 
629  /* clear control register */
631 }
632 
633 static int cortex_a_dpm_setup(struct cortex_a_common *a, uint32_t didr)
634 {
635  struct arm_dpm *dpm = &a->armv7a_common.dpm;
636  int retval;
637 
638  dpm->arm = &a->armv7a_common.arm;
639  dpm->didr = didr;
640 
643 
648 
652 
655 
656  retval = arm_dpm_setup(dpm);
657  if (retval == ERROR_OK)
658  retval = arm_dpm_initialize(dpm);
659 
660  return retval;
661 }
662 static struct target *get_cortex_a(struct target *target, int32_t coreid)
663 {
664  struct target_list *head;
665 
667  struct target *curr = head->target;
668  if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
669  return curr;
670  }
671  return target;
672 }
673 static int cortex_a_halt(struct target *target);
674 
675 static int cortex_a_halt_smp(struct target *target)
676 {
677  int retval = 0;
678  struct target_list *head;
679 
681  struct target *curr = head->target;
682  if ((curr != target) && (curr->state != TARGET_HALTED)
683  && target_was_examined(curr))
684  retval += cortex_a_halt(curr);
685  }
686  return retval;
687 }
688 
689 static int update_halt_gdb(struct target *target)
690 {
691  struct target *gdb_target = NULL;
692  struct target_list *head;
693  struct target *curr;
694  int retval = 0;
695 
696  if (target->gdb_service && target->gdb_service->core[0] == -1) {
699  retval += cortex_a_halt_smp(target);
700  }
701 
702  if (target->gdb_service)
703  gdb_target = target->gdb_service->target;
704 
706  curr = head->target;
707  /* skip calling context */
708  if (curr == target)
709  continue;
710  if (!target_was_examined(curr))
711  continue;
712  /* skip targets that were already halted */
713  if (curr->state == TARGET_HALTED)
714  continue;
715  /* Skip gdb_target; it alerts GDB so has to be polled as last one */
716  if (curr == gdb_target)
717  continue;
718 
719  /* avoid recursion in cortex_a_poll() */
720  curr->smp = 0;
721  cortex_a_poll(curr);
722  curr->smp = 1;
723  }
724 
725  /* after all targets were updated, poll the gdb serving target */
726  if (gdb_target && gdb_target != target)
727  cortex_a_poll(gdb_target);
728  return retval;
729 }
730 
731 /*
732  * Cortex-A Run control
733  */
734 
735 static int cortex_a_poll(struct target *target)
736 {
737  int retval = ERROR_OK;
738  uint32_t dscr;
739  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
740  struct armv7a_common *armv7a = &cortex_a->armv7a_common;
741  enum target_state prev_target_state = target->state;
742  /* toggle to another core is done by gdb as follow */
743  /* maint packet J core_id */
744  /* continue */
745  /* the next polling trigger an halt event sent to gdb */
746  if ((target->state == TARGET_HALTED) && (target->smp) &&
747  (target->gdb_service) &&
748  (!target->gdb_service->target)) {
752  return retval;
753  }
754  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
755  armv7a->debug_base + CPUDBG_DSCR, &dscr);
756  if (retval != ERROR_OK)
757  return retval;
758  cortex_a->cpudbg_dscr = dscr;
759 
761  if (prev_target_state != TARGET_HALTED) {
762  /* We have a halting debug event */
763  LOG_DEBUG("Target halted");
765 
766  retval = cortex_a_debug_entry(target);
767  if (retval != ERROR_OK)
768  return retval;
769 
770  if (target->smp) {
771  retval = update_halt_gdb(target);
772  if (retval != ERROR_OK)
773  return retval;
774  }
775 
776  if (prev_target_state == TARGET_DEBUG_RUNNING) {
778  } else { /* prev_target_state is RUNNING, UNKNOWN or RESET */
779  if (arm_semihosting(target, &retval) != 0)
780  return retval;
781 
784  }
785  }
786  } else
788 
789  return retval;
790 }
791 
792 static int cortex_a_halt(struct target *target)
793 {
794  int retval;
795  uint32_t dscr;
796  struct armv7a_common *armv7a = target_to_armv7a(target);
797 
798  /*
799  * Tell the core to be halted by writing DRCR with 0x1
800  * and then wait for the core to be halted.
801  */
802  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
803  armv7a->debug_base + CPUDBG_DRCR, DRCR_HALT);
804  if (retval != ERROR_OK)
805  return retval;
806 
807  dscr = 0; /* force read of dscr */
809  DSCR_CORE_HALTED, &dscr);
810  if (retval != ERROR_OK) {
811  LOG_ERROR("Error waiting for halt");
812  return retval;
813  }
814 
816 
817  return ERROR_OK;
818 }
819 
820 static int cortex_a_internal_restore(struct target *target, bool current,
821  target_addr_t *address, bool handle_breakpoints, bool debug_execution)
822 {
823  struct armv7a_common *armv7a = target_to_armv7a(target);
824  struct arm *arm = &armv7a->arm;
825  int retval;
826  uint32_t resume_pc;
827 
828  if (!debug_execution)
830 
831 #if 0
832  if (debug_execution) {
833  /* Disable interrupts */
834  /* We disable interrupts in the PRIMASK register instead of
835  * masking with C_MASKINTS,
836  * This is probably the same issue as Cortex-M3 Errata 377493:
837  * C_MASKINTS in parallel with disabled interrupts can cause
838  * local faults to not be taken. */
839  buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
840  armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = true;
841  armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = true;
842 
843  /* Make sure we are in Thumb mode */
844  buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_XPSR].value, 0, 32,
845  buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_XPSR].value, 0,
846  32) | (1 << 24));
847  armv7m->core_cache->reg_list[ARMV7M_XPSR].dirty = true;
848  armv7m->core_cache->reg_list[ARMV7M_XPSR].valid = true;
849  }
850 #endif
851 
852  /* current = true: continue on current pc, otherwise continue at <address> */
853  resume_pc = buf_get_u32(arm->pc->value, 0, 32);
854  if (!current)
855  resume_pc = *address;
856  else
857  *address = resume_pc;
858 
859  /* Make sure that the Armv7 gdb thumb fixups does not
860  * kill the return address
861  */
862  switch (arm->core_state) {
863  case ARM_STATE_ARM:
864  resume_pc &= 0xFFFFFFFC;
865  break;
866  case ARM_STATE_THUMB:
867  case ARM_STATE_THUMB_EE:
868  /* When the return address is loaded into PC
869  * bit 0 must be 1 to stay in Thumb state
870  */
871  resume_pc |= 0x1;
872  break;
873  case ARM_STATE_JAZELLE:
874  LOG_ERROR("How do I resume into Jazelle state??");
875  return ERROR_FAIL;
876  case ARM_STATE_AARCH64:
877  LOG_ERROR("Shouldn't be in AARCH64 state");
878  return ERROR_FAIL;
879  }
880  LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
881  buf_set_u32(arm->pc->value, 0, 32, resume_pc);
882  arm->pc->dirty = true;
883  arm->pc->valid = true;
884 
885  /* restore dpm_mode at system halt */
887  /* called it now before restoring context because it uses cpu
888  * register r0 for restoring cp15 control register */
890  if (retval != ERROR_OK)
891  return retval;
892  retval = cortex_a_restore_context(target, handle_breakpoints);
893  if (retval != ERROR_OK)
894  return retval;
897 
898  /* registers are now invalid */
900 
901 #if 0
902  /* the front-end may request us not to handle breakpoints */
903  if (handle_breakpoints) {
904  /* Single step past breakpoint at current address */
905  breakpoint = breakpoint_find(target, resume_pc);
906  if (breakpoint) {
907  LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
908  cortex_m3_unset_breakpoint(target, breakpoint);
909  cortex_m3_single_step_core(target);
910  cortex_m3_set_breakpoint(target, breakpoint);
911  }
912  }
913 
914 #endif
915  return retval;
916 }
917 
919 {
920  struct armv7a_common *armv7a = target_to_armv7a(target);
921  struct arm *arm = &armv7a->arm;
922  int retval;
923  uint32_t dscr;
924  /*
925  * * Restart core and wait for it to be started. Clear ITRen and sticky
926  * * exception flags: see ARMv7 ARM, C5.9.
927  *
928  * REVISIT: for single stepping, we probably want to
929  * disable IRQs by default, with optional override...
930  */
931 
932  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
933  armv7a->debug_base + CPUDBG_DSCR, &dscr);
934  if (retval != ERROR_OK)
935  return retval;
936 
937  if ((dscr & DSCR_INSTR_COMP) == 0)
938  LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
939 
940  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
941  armv7a->debug_base + CPUDBG_DSCR, dscr & ~DSCR_ITR_EN);
942  if (retval != ERROR_OK)
943  return retval;
944 
945  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
946  armv7a->debug_base + CPUDBG_DRCR, DRCR_RESTART |
948  if (retval != ERROR_OK)
949  return retval;
950 
951  dscr = 0; /* force read of dscr */
953  DSCR_CORE_RESTARTED, &dscr);
954  if (retval != ERROR_OK) {
955  LOG_ERROR("Error waiting for resume");
956  return retval;
957  }
958 
961 
962  /* registers are now invalid */
964 
965  return ERROR_OK;
966 }
967 
968 static int cortex_a_restore_smp(struct target *target, bool handle_breakpoints)
969 {
970  int retval = 0;
971  struct target_list *head;
973 
975  struct target *curr = head->target;
976  if ((curr != target) && (curr->state != TARGET_RUNNING)
977  && target_was_examined(curr)) {
978  /* resume current address , not in step mode */
979  retval += cortex_a_internal_restore(curr, true, &address,
980  handle_breakpoints, false);
981  retval += cortex_a_internal_restart(curr);
982  }
983  }
984  return retval;
985 }
986 
987 static int cortex_a_resume(struct target *target, bool current,
988  target_addr_t address, bool handle_breakpoints, bool debug_execution)
989 {
990  int retval = 0;
991  /* dummy resume for smp toggle in order to reduce gdb impact */
992  if ((target->smp) && (target->gdb_service->core[1] != -1)) {
993  /* simulate a start and halt of target */
996  /* fake resume at next poll we play the target core[1], see poll*/
998  return 0;
999  }
1000  cortex_a_internal_restore(target, current, &address, handle_breakpoints,
1001  debug_execution);
1002  if (target->smp) {
1003  target->gdb_service->core[0] = -1;
1004  retval = cortex_a_restore_smp(target, handle_breakpoints);
1005  if (retval != ERROR_OK)
1006  return retval;
1007  }
1009 
1010  if (!debug_execution) {
1013  LOG_DEBUG("target resumed at " TARGET_ADDR_FMT, address);
1014  } else {
1017  LOG_DEBUG("target debug resumed at " TARGET_ADDR_FMT, address);
1018  }
1019 
1020  return ERROR_OK;
1021 }
1022 
1024 {
1025  uint32_t dscr;
1026  int retval = ERROR_OK;
1027  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1028  struct armv7a_common *armv7a = target_to_armv7a(target);
1029  struct arm *arm = &armv7a->arm;
1030 
1031  LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a->cpudbg_dscr);
1032 
1033  /* REVISIT surely we should not re-read DSCR !! */
1034  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1035  armv7a->debug_base + CPUDBG_DSCR, &dscr);
1036  if (retval != ERROR_OK)
1037  return retval;
1038 
1039  /* REVISIT see A TRM 12.11.4 steps 2..3 -- make sure that any
1040  * imprecise data aborts get discarded by issuing a Data
1041  * Synchronization Barrier: ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
1042  */
1043 
1044  /* Enable the ITR execution once we are in debug mode */
1045  dscr |= DSCR_ITR_EN;
1046  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1047  armv7a->debug_base + CPUDBG_DSCR, dscr);
1048  if (retval != ERROR_OK)
1049  return retval;
1050 
1051  /* Examine debug reason */
1052  arm_dpm_report_dscr(&armv7a->dpm, cortex_a->cpudbg_dscr);
1053 
1054  /* save address of instruction that triggered the watchpoint? */
1056  uint32_t wfar;
1057 
1058  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1059  armv7a->debug_base + CPUDBG_WFAR,
1060  &wfar);
1061  if (retval != ERROR_OK)
1062  return retval;
1063  arm_dpm_report_wfar(&armv7a->dpm, wfar);
1064  }
1065 
1066  /* First load register accessible through core debug port */
1067  retval = arm_dpm_read_current_registers(&armv7a->dpm);
1068  if (retval != ERROR_OK)
1069  return retval;
1070 
1071  if (arm->spsr) {
1072  /* read SPSR */
1073  retval = arm_dpm_read_reg(&armv7a->dpm, arm->spsr, 17);
1074  if (retval != ERROR_OK)
1075  return retval;
1076  }
1077 
1078 #if 0
1079 /* TODO, Move this */
1080  uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
1081  cortex_a_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
1082  LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
1083 
1084  cortex_a_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
1085  LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
1086 
1087  cortex_a_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
1088  LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
1089 #endif
1090 
1091  /* Are we in an exception handler */
1092 /* armv4_5->exception_number = 0; */
1093  if (armv7a->post_debug_entry) {
1094  retval = armv7a->post_debug_entry(target);
1095  if (retval != ERROR_OK)
1096  return retval;
1097  }
1098 
1099  return retval;
1100 }
1101 
1103 {
1104  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1105  struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1106  int retval;
1107 
1108  /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1109  retval = armv7a->arm.mrc(target, 15,
1110  0, 0, /* op1, op2 */
1111  1, 0, /* CRn, CRm */
1112  &cortex_a->cp15_control_reg);
1113  if (retval != ERROR_OK)
1114  return retval;
1115  LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg);
1116  cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
1117 
1118  if (!armv7a->is_armv7r)
1120 
1121  if (armv7a->armv7a_mmu.armv7a_cache.info == -1)
1123 
1124  if (armv7a->is_armv7r) {
1125  armv7a->armv7a_mmu.mmu_enabled = 0;
1126  } else {
1127  armv7a->armv7a_mmu.mmu_enabled =
1128  (cortex_a->cp15_control_reg & 0x1U) ? 1 : 0;
1129  }
1131  (cortex_a->cp15_control_reg & 0x4U) ? 1 : 0;
1133  (cortex_a->cp15_control_reg & 0x1000U) ? 1 : 0;
1134  cortex_a->curr_mode = armv7a->arm.core_mode;
1135 
1136  /* switch to SVC mode to read DACR */
1137  arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
1138  armv7a->arm.mrc(target, 15,
1139  0, 0, 3, 0,
1140  &cortex_a->cp15_dacr_reg);
1141 
1142  LOG_DEBUG("cp15_dacr_reg: %8.8" PRIx32,
1143  cortex_a->cp15_dacr_reg);
1144 
1145  arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
1146  return ERROR_OK;
1147 }
1148 
1150  unsigned long bit_mask, unsigned long value)
1151 {
1152  struct armv7a_common *armv7a = target_to_armv7a(target);
1153  uint32_t dscr;
1154 
1155  /* Read DSCR */
1156  int retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1157  armv7a->debug_base + CPUDBG_DSCR, &dscr);
1158  if (retval != ERROR_OK)
1159  return retval;
1160 
1161  /* clear bitfield */
1162  dscr &= ~bit_mask;
1163  /* put new value */
1164  dscr |= value & bit_mask;
1165 
1166  /* write new DSCR */
1167  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1168  armv7a->debug_base + CPUDBG_DSCR, dscr);
1169  return retval;
1170 }
1171 
1172 static int cortex_a_step(struct target *target, bool current, target_addr_t address,
1173  bool handle_breakpoints)
1174 {
1175  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1176  struct armv7a_common *armv7a = target_to_armv7a(target);
1177  struct arm *arm = &armv7a->arm;
1178  struct breakpoint *breakpoint = NULL;
1179  struct breakpoint stepbreakpoint;
1180  struct reg *r;
1181  int retval;
1182 
1183  if (target->state != TARGET_HALTED) {
1184  LOG_TARGET_ERROR(target, "not halted");
1185  return ERROR_TARGET_NOT_HALTED;
1186  }
1187 
1188  /* current = true: continue on current pc, otherwise continue at <address> */
1189  r = arm->pc;
1190  if (!current)
1191  buf_set_u32(r->value, 0, 32, address);
1192  else
1193  address = buf_get_u32(r->value, 0, 32);
1194 
1195  /* The front-end may request us not to handle breakpoints.
1196  * But since Cortex-A uses breakpoint for single step,
1197  * we MUST handle breakpoints.
1198  */
1199  handle_breakpoints = true;
1200  if (handle_breakpoints) {
1202  if (breakpoint)
1204  }
1205 
1206  /* Setup single step breakpoint */
1207  stepbreakpoint.address = address;
1208  stepbreakpoint.asid = 0;
1209  stepbreakpoint.length = (arm->core_state == ARM_STATE_THUMB)
1210  ? 2 : 4;
1211  stepbreakpoint.type = BKPT_HARD;
1212  stepbreakpoint.is_set = false;
1213 
1214  /* Disable interrupts during single step if requested */
1215  if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1217  if (retval != ERROR_OK)
1218  return retval;
1219  }
1220 
1221  /* Break on IVA mismatch */
1222  cortex_a_set_breakpoint(target, &stepbreakpoint, 0x04);
1223 
1225 
1226  retval = cortex_a_resume(target, true, address, false, false);
1227  if (retval != ERROR_OK)
1228  return retval;
1229 
1230  int64_t then = timeval_ms();
1231  while (target->state != TARGET_HALTED) {
1232  retval = cortex_a_poll(target);
1233  if (retval != ERROR_OK)
1234  return retval;
1235  if (target->state == TARGET_HALTED)
1236  break;
1237  if (timeval_ms() > then + 1000) {
1238  LOG_ERROR("timeout waiting for target halt");
1239  return ERROR_FAIL;
1240  }
1241  }
1242 
1243  cortex_a_unset_breakpoint(target, &stepbreakpoint);
1244 
1245  /* Re-enable interrupts if they were disabled */
1246  if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1248  if (retval != ERROR_OK)
1249  return retval;
1250  }
1251 
1252 
1254 
1255  if (breakpoint)
1257 
1258  if (target->state != TARGET_HALTED)
1259  LOG_DEBUG("target stepped");
1260 
1261  return ERROR_OK;
1262 }
1263 
1264 static int cortex_a_restore_context(struct target *target, bool bpwp)
1265 {
1266  struct armv7a_common *armv7a = target_to_armv7a(target);
1267 
1268  LOG_DEBUG(" ");
1269 
1270  if (armv7a->pre_restore_context)
1271  armv7a->pre_restore_context(target);
1272 
1273  return arm_dpm_write_dirty_registers(&armv7a->dpm, bpwp);
1274 }
1275 
1276 /*
1277  * Cortex-A Breakpoint and watchpoint functions
1278  */
1279 
1280 /* Setup hardware Breakpoint Register Pair */
1282  struct breakpoint *breakpoint, uint8_t matchmode)
1283 {
1284  int retval;
1285  int brp_i = 0;
1286  uint32_t control;
1287  uint8_t byte_addr_select = 0x0F;
1288  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1289  struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1290  struct cortex_a_brp *brp_list = cortex_a->brp_list;
1291 
1292  if (breakpoint->is_set) {
1293  LOG_WARNING("breakpoint already set");
1294  return ERROR_OK;
1295  }
1296 
1297  if (breakpoint->type == BKPT_HARD) {
1298  while (brp_list[brp_i].used && (brp_i < cortex_a->brp_num))
1299  brp_i++;
1300  if (brp_i >= cortex_a->brp_num) {
1301  LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1303  }
1304  breakpoint_hw_set(breakpoint, brp_i);
1305  if (breakpoint->length == 2)
1306  byte_addr_select = (3 << (breakpoint->address & 0x02));
1307  control = ((matchmode & 0x7) << 20)
1308  | (byte_addr_select << 5)
1309  | (3 << 1) | 1;
1310  brp_list[brp_i].used = true;
1311  brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1312  brp_list[brp_i].control = control;
1313  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1314  armv7a->debug_base + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].brpn,
1315  brp_list[brp_i].value);
1316  if (retval != ERROR_OK)
1317  return retval;
1318  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1319  armv7a->debug_base + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].brpn,
1320  brp_list[brp_i].control);
1321  if (retval != ERROR_OK)
1322  return retval;
1323  LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1324  brp_list[brp_i].control,
1325  brp_list[brp_i].value);
1326  } else if (breakpoint->type == BKPT_SOFT) {
1327  uint8_t code[4];
1328  if (breakpoint->length == 2) {
1329  /* length == 2: Thumb breakpoint */
1330  buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1331  } else if (breakpoint->length == 3) {
1332  /* length == 3: Thumb-2 breakpoint, actual encoding is
1333  * a regular Thumb BKPT instruction but we replace a
1334  * 32bit Thumb-2 instruction, so fix-up the breakpoint
1335  * length
1336  */
1337  buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1338  breakpoint->length = 4;
1339  } else {
1340  /* length == 4, normal ARM breakpoint */
1341  buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1342  }
1343 
1344  retval = target_read_memory(target,
1345  breakpoint->address & 0xFFFFFFFE,
1346  breakpoint->length, 1,
1348  if (retval != ERROR_OK)
1349  return retval;
1350 
1351  /* make sure data cache is cleaned & invalidated down to PoC */
1353 
1354  retval = target_write_memory(target,
1355  breakpoint->address & 0xFFFFFFFE,
1356  breakpoint->length, 1, code);
1357  if (retval != ERROR_OK)
1358  return retval;
1359 
1360  /* update i-cache at breakpoint location */
1363 
1364  breakpoint->is_set = true;
1365  }
1366 
1367  return ERROR_OK;
1368 }
1369 
1371  struct breakpoint *breakpoint, uint8_t matchmode)
1372 {
1373  int retval = ERROR_FAIL;
1374  int brp_i = 0;
1375  uint32_t control;
1376  uint8_t byte_addr_select = 0x0F;
1377  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1378  struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1379  struct cortex_a_brp *brp_list = cortex_a->brp_list;
1380 
1381  if (breakpoint->is_set) {
1382  LOG_WARNING("breakpoint already set");
1383  return retval;
1384  }
1385  /*check available context BRPs*/
1386  while ((brp_list[brp_i].used ||
1387  (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < cortex_a->brp_num))
1388  brp_i++;
1389 
1390  if (brp_i >= cortex_a->brp_num) {
1391  LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1392  return ERROR_FAIL;
1393  }
1394 
1395  breakpoint_hw_set(breakpoint, brp_i);
1396  control = ((matchmode & 0x7) << 20)
1397  | (byte_addr_select << 5)
1398  | (3 << 1) | 1;
1399  brp_list[brp_i].used = true;
1400  brp_list[brp_i].value = (breakpoint->asid);
1401  brp_list[brp_i].control = control;
1402  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1403  armv7a->debug_base + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].brpn,
1404  brp_list[brp_i].value);
1405  if (retval != ERROR_OK)
1406  return retval;
1407  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1408  armv7a->debug_base + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].brpn,
1409  brp_list[brp_i].control);
1410  if (retval != ERROR_OK)
1411  return retval;
1412  LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1413  brp_list[brp_i].control,
1414  brp_list[brp_i].value);
1415  return ERROR_OK;
1416 
1417 }
1418 
1420 {
1421  int retval = ERROR_FAIL;
1422  int brp_1 = 0; /* holds the contextID pair */
1423  int brp_2 = 0; /* holds the IVA pair */
1424  uint32_t control_ctx, control_iva;
1425  uint8_t ctx_byte_addr_select = 0x0F;
1426  uint8_t iva_byte_addr_select = 0x0F;
1427  uint8_t ctx_machmode = 0x03;
1428  uint8_t iva_machmode = 0x01;
1429  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1430  struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1431  struct cortex_a_brp *brp_list = cortex_a->brp_list;
1432 
1433  if (breakpoint->is_set) {
1434  LOG_WARNING("breakpoint already set");
1435  return retval;
1436  }
1437  /*check available context BRPs*/
1438  while ((brp_list[brp_1].used ||
1439  (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < cortex_a->brp_num))
1440  brp_1++;
1441 
1442  LOG_DEBUG("brp(CTX) found num: %d", brp_1);
1443  if (brp_1 >= cortex_a->brp_num) {
1444  LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1445  return ERROR_FAIL;
1446  }
1447 
1448  while ((brp_list[brp_2].used ||
1449  (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < cortex_a->brp_num))
1450  brp_2++;
1451 
1452  LOG_DEBUG("brp(IVA) found num: %d", brp_2);
1453  if (brp_2 >= cortex_a->brp_num) {
1454  LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1455  return ERROR_FAIL;
1456  }
1457 
1458  breakpoint_hw_set(breakpoint, brp_1);
1459  breakpoint->linked_brp = brp_2;
1460  control_ctx = ((ctx_machmode & 0x7) << 20)
1461  | (brp_2 << 16)
1462  | (0 << 14)
1463  | (ctx_byte_addr_select << 5)
1464  | (3 << 1) | 1;
1465  brp_list[brp_1].used = true;
1466  brp_list[brp_1].value = (breakpoint->asid);
1467  brp_list[brp_1].control = control_ctx;
1468  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1469  armv7a->debug_base + CPUDBG_BVR_BASE + 4 * brp_list[brp_1].brpn,
1470  brp_list[brp_1].value);
1471  if (retval != ERROR_OK)
1472  return retval;
1473  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1474  armv7a->debug_base + CPUDBG_BCR_BASE + 4 * brp_list[brp_1].brpn,
1475  brp_list[brp_1].control);
1476  if (retval != ERROR_OK)
1477  return retval;
1478 
1479  control_iva = ((iva_machmode & 0x7) << 20)
1480  | (brp_1 << 16)
1481  | (iva_byte_addr_select << 5)
1482  | (3 << 1) | 1;
1483  brp_list[brp_2].used = true;
1484  brp_list[brp_2].value = (breakpoint->address & 0xFFFFFFFC);
1485  brp_list[brp_2].control = control_iva;
1486  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1487  armv7a->debug_base + CPUDBG_BVR_BASE + 4 * brp_list[brp_2].brpn,
1488  brp_list[brp_2].value);
1489  if (retval != ERROR_OK)
1490  return retval;
1491  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1492  armv7a->debug_base + CPUDBG_BCR_BASE + 4 * brp_list[brp_2].brpn,
1493  brp_list[brp_2].control);
1494  if (retval != ERROR_OK)
1495  return retval;
1496 
1497  return ERROR_OK;
1498 }
1499 
1501 {
1502  int retval;
1503  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1504  struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1505  struct cortex_a_brp *brp_list = cortex_a->brp_list;
1506 
1507  if (!breakpoint->is_set) {
1508  LOG_WARNING("breakpoint not set");
1509  return ERROR_OK;
1510  }
1511 
1512  if (breakpoint->type == BKPT_HARD) {
1513  if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1514  int brp_i = breakpoint->number;
1515  int brp_j = breakpoint->linked_brp;
1516  if (brp_i >= cortex_a->brp_num) {
1517  LOG_DEBUG("Invalid BRP number in breakpoint");
1518  return ERROR_OK;
1519  }
1520  LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1521  brp_list[brp_i].control, brp_list[brp_i].value);
1522  brp_list[brp_i].used = false;
1523  brp_list[brp_i].value = 0;
1524  brp_list[brp_i].control = 0;
1525  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1526  armv7a->debug_base + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].brpn,
1527  brp_list[brp_i].control);
1528  if (retval != ERROR_OK)
1529  return retval;
1530  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1531  armv7a->debug_base + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].brpn,
1532  brp_list[brp_i].value);
1533  if (retval != ERROR_OK)
1534  return retval;
1535  if ((brp_j < 0) || (brp_j >= cortex_a->brp_num)) {
1536  LOG_DEBUG("Invalid BRP number in breakpoint");
1537  return ERROR_OK;
1538  }
1539  LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_j,
1540  brp_list[brp_j].control, brp_list[brp_j].value);
1541  brp_list[brp_j].used = false;
1542  brp_list[brp_j].value = 0;
1543  brp_list[brp_j].control = 0;
1544  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1545  armv7a->debug_base + CPUDBG_BCR_BASE + 4 * brp_list[brp_j].brpn,
1546  brp_list[brp_j].control);
1547  if (retval != ERROR_OK)
1548  return retval;
1549  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1550  armv7a->debug_base + CPUDBG_BVR_BASE + 4 * brp_list[brp_j].brpn,
1551  brp_list[brp_j].value);
1552  if (retval != ERROR_OK)
1553  return retval;
1554  breakpoint->linked_brp = 0;
1555  breakpoint->is_set = false;
1556  return ERROR_OK;
1557 
1558  } else {
1559  int brp_i = breakpoint->number;
1560  if (brp_i >= cortex_a->brp_num) {
1561  LOG_DEBUG("Invalid BRP number in breakpoint");
1562  return ERROR_OK;
1563  }
1564  LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1565  brp_list[brp_i].control, brp_list[brp_i].value);
1566  brp_list[brp_i].used = false;
1567  brp_list[brp_i].value = 0;
1568  brp_list[brp_i].control = 0;
1569  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1570  armv7a->debug_base + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].brpn,
1571  brp_list[brp_i].control);
1572  if (retval != ERROR_OK)
1573  return retval;
1574  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1575  armv7a->debug_base + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].brpn,
1576  brp_list[brp_i].value);
1577  if (retval != ERROR_OK)
1578  return retval;
1579  breakpoint->is_set = false;
1580  return ERROR_OK;
1581  }
1582  } else {
1583 
1584  /* make sure data cache is cleaned & invalidated down to PoC */
1586  breakpoint->length);
1587 
1588  /* restore original instruction (kept in target endianness) */
1589  if (breakpoint->length == 4) {
1590  retval = target_write_memory(target,
1591  breakpoint->address & 0xFFFFFFFE,
1592  4, 1, breakpoint->orig_instr);
1593  if (retval != ERROR_OK)
1594  return retval;
1595  } else {
1596  retval = target_write_memory(target,
1597  breakpoint->address & 0xFFFFFFFE,
1598  2, 1, breakpoint->orig_instr);
1599  if (retval != ERROR_OK)
1600  return retval;
1601  }
1602 
1603  /* update i-cache at breakpoint location */
1605  breakpoint->length);
1607  breakpoint->length);
1608  }
1609  breakpoint->is_set = false;
1610 
1611  return ERROR_OK;
1612 }
1613 
1615  struct breakpoint *breakpoint)
1616 {
1617  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1618 
1619  if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1620  LOG_INFO("no hardware breakpoint available");
1622  }
1623 
1624  if (breakpoint->type == BKPT_HARD)
1625  cortex_a->brp_num_available--;
1626 
1627  return cortex_a_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1628 }
1629 
1631  struct breakpoint *breakpoint)
1632 {
1633  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1634 
1635  if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1636  LOG_INFO("no hardware breakpoint available");
1638  }
1639 
1640  if (breakpoint->type == BKPT_HARD)
1641  cortex_a->brp_num_available--;
1642 
1643  return cortex_a_set_context_breakpoint(target, breakpoint, 0x02); /* asid match */
1644 }
1645 
1647  struct breakpoint *breakpoint)
1648 {
1649  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1650 
1651  if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1652  LOG_INFO("no hardware breakpoint available");
1654  }
1655 
1656  if (breakpoint->type == BKPT_HARD)
1657  cortex_a->brp_num_available--;
1658 
1660 }
1661 
1662 
1664 {
1665  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1666 
1667 #if 0
1668 /* It is perfectly possible to remove breakpoints while the target is running */
1669  if (target->state != TARGET_HALTED) {
1670  LOG_WARNING("target not halted");
1671  return ERROR_TARGET_NOT_HALTED;
1672  }
1673 #endif
1674 
1675  if (breakpoint->is_set) {
1677  if (breakpoint->type == BKPT_HARD)
1678  cortex_a->brp_num_available++;
1679  }
1680 
1681 
1682  return ERROR_OK;
1683 }
1684 
1696 {
1697  int retval = ERROR_OK;
1698  int wrp_i = 0;
1699  uint32_t control;
1700  uint32_t address;
1701  uint8_t address_mask;
1702  uint8_t byte_address_select;
1703  uint8_t load_store_access_control = 0x3;
1704  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1705  struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1706  struct cortex_a_wrp *wrp_list = cortex_a->wrp_list;
1707 
1708  if (watchpoint->is_set) {
1709  LOG_WARNING("watchpoint already set");
1710  return retval;
1711  }
1712 
1713  /* check available context WRPs */
1714  while (wrp_list[wrp_i].used && (wrp_i < cortex_a->wrp_num))
1715  wrp_i++;
1716 
1717  if (wrp_i >= cortex_a->wrp_num) {
1718  LOG_ERROR("ERROR Can not find free Watchpoint Register Pair");
1719  return ERROR_FAIL;
1720  }
1721 
1722  if (watchpoint->length == 0 || watchpoint->length > 0x80000000U ||
1723  (watchpoint->length & (watchpoint->length - 1))) {
1724  LOG_WARNING("watchpoint length must be a power of 2");
1725  return ERROR_FAIL;
1726  }
1727 
1728  if (watchpoint->address & (watchpoint->length - 1)) {
1729  LOG_WARNING("watchpoint address must be aligned at length");
1730  return ERROR_FAIL;
1731  }
1732 
1733  /* FIXME: ARM DDI 0406C: address_mask is optional. What to do if it's missing? */
1734  /* handle wp length 1 and 2 through byte select */
1735  switch (watchpoint->length) {
1736  case 1:
1737  byte_address_select = BIT(watchpoint->address & 0x3);
1738  address = watchpoint->address & ~0x3;
1739  address_mask = 0;
1740  break;
1741 
1742  case 2:
1743  byte_address_select = 0x03 << (watchpoint->address & 0x2);
1744  address = watchpoint->address & ~0x3;
1745  address_mask = 0;
1746  break;
1747 
1748  case 4:
1749  byte_address_select = 0x0f;
1751  address_mask = 0;
1752  break;
1753 
1754  default:
1755  byte_address_select = 0xff;
1757  address_mask = ilog2(watchpoint->length);
1758  break;
1759  }
1760 
1761  watchpoint_set(watchpoint, wrp_i);
1762  control = (address_mask << 24) |
1763  (byte_address_select << 5) |
1764  (load_store_access_control << 3) |
1765  (0x3 << 1) | 1;
1766  wrp_list[wrp_i].used = true;
1767  wrp_list[wrp_i].value = address;
1768  wrp_list[wrp_i].control = control;
1769 
1770  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1771  armv7a->debug_base + CPUDBG_WVR_BASE + 4 * wrp_list[wrp_i].wrpn,
1772  wrp_list[wrp_i].value);
1773  if (retval != ERROR_OK)
1774  return retval;
1775 
1776  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1777  armv7a->debug_base + CPUDBG_WCR_BASE + 4 * wrp_list[wrp_i].wrpn,
1778  wrp_list[wrp_i].control);
1779  if (retval != ERROR_OK)
1780  return retval;
1781 
1782  LOG_DEBUG("wp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, wrp_i,
1783  wrp_list[wrp_i].control,
1784  wrp_list[wrp_i].value);
1785 
1786  return ERROR_OK;
1787 }
1788 
1798 {
1799  int retval;
1800  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1801  struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1802  struct cortex_a_wrp *wrp_list = cortex_a->wrp_list;
1803 
1804  if (!watchpoint->is_set) {
1805  LOG_WARNING("watchpoint not set");
1806  return ERROR_OK;
1807  }
1808 
1809  int wrp_i = watchpoint->number;
1810  if (wrp_i >= cortex_a->wrp_num) {
1811  LOG_DEBUG("Invalid WRP number in watchpoint");
1812  return ERROR_OK;
1813  }
1814  LOG_DEBUG("wrp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, wrp_i,
1815  wrp_list[wrp_i].control, wrp_list[wrp_i].value);
1816  wrp_list[wrp_i].used = false;
1817  wrp_list[wrp_i].value = 0;
1818  wrp_list[wrp_i].control = 0;
1819  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1820  armv7a->debug_base + CPUDBG_WCR_BASE + 4 * wrp_list[wrp_i].wrpn,
1821  wrp_list[wrp_i].control);
1822  if (retval != ERROR_OK)
1823  return retval;
1824  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1825  armv7a->debug_base + CPUDBG_WVR_BASE + 4 * wrp_list[wrp_i].wrpn,
1826  wrp_list[wrp_i].value);
1827  if (retval != ERROR_OK)
1828  return retval;
1829  watchpoint->is_set = false;
1830 
1831  return ERROR_OK;
1832 }
1833 
1843 {
1844  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1845 
1846  if (cortex_a->wrp_num_available < 1) {
1847  LOG_INFO("no hardware watchpoint available");
1849  }
1850 
1851  int retval = cortex_a_set_watchpoint(target, watchpoint);
1852  if (retval != ERROR_OK)
1853  return retval;
1854 
1855  cortex_a->wrp_num_available--;
1856  return ERROR_OK;
1857 }
1858 
1868 {
1869  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1870 
1871  if (watchpoint->is_set) {
1872  cortex_a->wrp_num_available++;
1874  }
1875  return ERROR_OK;
1876 }
1877 
1878 
1879 /*
1880  * Cortex-A Reset functions
1881  */
1882 
1884 {
1885  struct armv7a_common *armv7a = target_to_armv7a(target);
1886 
1887  LOG_DEBUG(" ");
1888 
1889  /* FIXME when halt is requested, make it work somehow... */
1890 
1891  /* This function can be called in "target not examined" state */
1892 
1893  /* Issue some kind of warm reset. */
1896  else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1897  /* REVISIT handle "pulls" cases, if there's
1898  * hardware that needs them to work.
1899  */
1900 
1901  /*
1902  * FIXME: fix reset when transport is not JTAG. This is a temporary
1903  * work-around for release v0.10 that is not intended to stay!
1904  */
1905  if (!transport_is_jtag() ||
1908 
1909  } else {
1910  LOG_ERROR("%s: how to reset?", target_name(target));
1911  return ERROR_FAIL;
1912  }
1913 
1914  /* registers are now invalid */
1915  if (armv7a->arm.core_cache)
1917 
1919 
1920  return ERROR_OK;
1921 }
1922 
1924 {
1925  struct armv7a_common *armv7a = target_to_armv7a(target);
1926  int retval;
1927 
1928  LOG_DEBUG(" ");
1929 
1930  /* be certain SRST is off */
1932 
1933  if (target_was_examined(target)) {
1934  retval = cortex_a_poll(target);
1935  if (retval != ERROR_OK)
1936  return retval;
1937  }
1938 
1939  if (target->reset_halt) {
1940  if (target->state != TARGET_HALTED) {
1941  LOG_WARNING("%s: ran after reset and before halt ...",
1942  target_name(target));
1943  if (target_was_examined(target)) {
1944  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1945  armv7a->debug_base + CPUDBG_DRCR, DRCR_HALT);
1946  if (retval != ERROR_OK)
1947  return retval;
1948  } else
1950  }
1951  }
1952 
1953  return ERROR_OK;
1954 }
1955 
1956 static int cortex_a_set_dcc_mode(struct target *target, uint32_t mode, uint32_t *dscr)
1957 {
1958  /* Changes the mode of the DCC between non-blocking, stall, and fast mode.
1959  * New desired mode must be in mode. Current value of DSCR must be in
1960  * *dscr, which is updated with new value.
1961  *
1962  * This function elides actually sending the mode-change over the debug
1963  * interface if the mode is already set as desired.
1964  */
1965  uint32_t new_dscr = (*dscr & ~DSCR_EXT_DCC_MASK) | mode;
1966  if (new_dscr != *dscr) {
1967  struct armv7a_common *armv7a = target_to_armv7a(target);
1968  int retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1969  armv7a->debug_base + CPUDBG_DSCR, new_dscr);
1970  if (retval == ERROR_OK)
1971  *dscr = new_dscr;
1972  return retval;
1973  } else {
1974  return ERROR_OK;
1975  }
1976 }
1977 
1978 static int cortex_a_wait_dscr_bits(struct target *target, uint32_t mask,
1979  uint32_t value, uint32_t *dscr)
1980 {
1981  /* Waits until the specified bit(s) of DSCR take on a specified value. */
1982  struct armv7a_common *armv7a = target_to_armv7a(target);
1983  int64_t then;
1984  int retval;
1985 
1986  if ((*dscr & mask) == value)
1987  return ERROR_OK;
1988 
1989  then = timeval_ms();
1990  while (1) {
1991  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1992  armv7a->debug_base + CPUDBG_DSCR, dscr);
1993  if (retval != ERROR_OK) {
1994  LOG_ERROR("Could not read DSCR register");
1995  return retval;
1996  }
1997  if ((*dscr & mask) == value)
1998  break;
1999  if (timeval_ms() > then + 1000) {
2000  LOG_ERROR("timeout waiting for DSCR bit change");
2001  return ERROR_FAIL;
2002  }
2003  }
2004  return ERROR_OK;
2005 }
2006 
2007 static int cortex_a_read_copro(struct target *target, uint32_t opcode,
2008  uint32_t *data, uint32_t *dscr)
2009 {
2010  int retval;
2011  struct armv7a_common *armv7a = target_to_armv7a(target);
2012 
2013  /* Move from coprocessor to R0. */
2014  retval = cortex_a_exec_opcode(target, opcode, dscr);
2015  if (retval != ERROR_OK)
2016  return retval;
2017 
2018  /* Move from R0 to DTRTX. */
2019  retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0), dscr);
2020  if (retval != ERROR_OK)
2021  return retval;
2022 
2023  /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
2024  * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2025  * must also check TXfull_l). Most of the time this will be free
2026  * because TXfull_l will be set immediately and cached in dscr. */
2028  DSCR_DTRTX_FULL_LATCHED, dscr);
2029  if (retval != ERROR_OK)
2030  return retval;
2031 
2032  /* Read the value transferred to DTRTX. */
2033  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2034  armv7a->debug_base + CPUDBG_DTRTX, data);
2035  if (retval != ERROR_OK)
2036  return retval;
2037 
2038  return ERROR_OK;
2039 }
2040 
2041 static int cortex_a_read_dfar_dfsr(struct target *target, uint32_t *dfar,
2042  uint32_t *dfsr, uint32_t *dscr)
2043 {
2044  int retval;
2045 
2046  if (dfar) {
2047  retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 6, 0, 0), dfar, dscr);
2048  if (retval != ERROR_OK)
2049  return retval;
2050  }
2051 
2052  if (dfsr) {
2053  retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 5, 0, 0), dfsr, dscr);
2054  if (retval != ERROR_OK)
2055  return retval;
2056  }
2057 
2058  return ERROR_OK;
2059 }
2060 
2061 static int cortex_a_write_copro(struct target *target, uint32_t opcode,
2062  uint32_t data, uint32_t *dscr)
2063 {
2064  int retval;
2065  struct armv7a_common *armv7a = target_to_armv7a(target);
2066 
2067  /* Write the value into DTRRX. */
2068  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2069  armv7a->debug_base + CPUDBG_DTRRX, data);
2070  if (retval != ERROR_OK)
2071  return retval;
2072 
2073  /* Move from DTRRX to R0. */
2074  retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), dscr);
2075  if (retval != ERROR_OK)
2076  return retval;
2077 
2078  /* Move from R0 to coprocessor. */
2079  retval = cortex_a_exec_opcode(target, opcode, dscr);
2080  if (retval != ERROR_OK)
2081  return retval;
2082 
2083  /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
2084  * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2085  * check RXfull_l). Most of the time this will be free because RXfull_l
2086  * will be cleared immediately and cached in dscr. */
2088  if (retval != ERROR_OK)
2089  return retval;
2090 
2091  return ERROR_OK;
2092 }
2093 
2094 static int cortex_a_write_dfar_dfsr(struct target *target, uint32_t dfar,
2095  uint32_t dfsr, uint32_t *dscr)
2096 {
2097  int retval;
2098 
2099  retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 6, 0, 0), dfar, dscr);
2100  if (retval != ERROR_OK)
2101  return retval;
2102 
2103  retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 5, 0, 0), dfsr, dscr);
2104  if (retval != ERROR_OK)
2105  return retval;
2106 
2107  return ERROR_OK;
2108 }
2109 
2110 static int cortex_a_dfsr_to_error_code(uint32_t dfsr)
2111 {
2112  uint32_t status, upper4;
2113 
2114  if (dfsr & (1 << 9)) {
2115  /* LPAE format. */
2116  status = dfsr & 0x3f;
2117  upper4 = status >> 2;
2118  if (upper4 == 1 || upper4 == 2 || upper4 == 3 || upper4 == 15)
2120  else if (status == 33)
2122  else
2123  return ERROR_TARGET_DATA_ABORT;
2124  } else {
2125  /* Normal format. */
2126  status = ((dfsr >> 6) & 0x10) | (dfsr & 0xf);
2127  if (status == 1)
2129  else if (status == 5 || status == 7 || status == 3 || status == 6 ||
2130  status == 9 || status == 11 || status == 13 || status == 15)
2132  else
2133  return ERROR_TARGET_DATA_ABORT;
2134  }
2135 }
2136 
2138  uint32_t size, uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2139 {
2140  /* Writes count objects of size size from *buffer. Old value of DSCR must
2141  * be in *dscr; updated to new value. This is slow because it works for
2142  * non-word-sized objects. Avoid unaligned accesses as they do not work
2143  * on memory address space without "Normal" attribute. If size == 4 and
2144  * the address is aligned, cortex_a_write_cpu_memory_fast should be
2145  * preferred.
2146  * Preconditions:
2147  * - Address is in R0.
2148  * - R0 is marked dirty.
2149  */
2150  struct armv7a_common *armv7a = target_to_armv7a(target);
2151  struct arm *arm = &armv7a->arm;
2152  int retval;
2153 
2154  /* Mark register R1 as dirty, to use for transferring data. */
2155  arm_reg_current(arm, 1)->dirty = true;
2156 
2157  /* Switch to non-blocking mode if not already in that mode. */
2159  if (retval != ERROR_OK)
2160  return retval;
2161 
2162  /* Go through the objects. */
2163  while (count) {
2164  /* Write the value to store into DTRRX. */
2165  uint32_t data, opcode;
2166  if (size == 1)
2167  data = *buffer;
2168  else if (size == 2)
2170  else
2172  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2173  armv7a->debug_base + CPUDBG_DTRRX, data);
2174  if (retval != ERROR_OK)
2175  return retval;
2176 
2177  /* Transfer the value from DTRRX to R1. */
2178  retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), dscr);
2179  if (retval != ERROR_OK)
2180  return retval;
2181 
2182  /* Write the value transferred to R1 into memory. */
2183  if (size == 1)
2184  opcode = ARMV4_5_STRB_IP(1, 0);
2185  else if (size == 2)
2186  opcode = ARMV4_5_STRH_IP(1, 0);
2187  else
2188  opcode = ARMV4_5_STRW_IP(1, 0);
2189  retval = cortex_a_exec_opcode(target, opcode, dscr);
2190  if (retval != ERROR_OK)
2191  return retval;
2192 
2193  /* Check for faults and return early. */
2195  return ERROR_OK; /* A data fault is not considered a system failure. */
2196 
2197  /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture
2198  * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2199  * must also check RXfull_l). Most of the time this will be free
2200  * because RXfull_l will be cleared immediately and cached in dscr. */
2202  if (retval != ERROR_OK)
2203  return retval;
2204 
2205  /* Advance. */
2206  buffer += size;
2207  --count;
2208  }
2209 
2210  return ERROR_OK;
2211 }
2212 
2214  uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2215 {
2216  /* Writes count objects of size 4 from *buffer. Old value of DSCR must be
2217  * in *dscr; updated to new value. This is fast but only works for
2218  * word-sized objects at aligned addresses.
2219  * Preconditions:
2220  * - Address is in R0 and must be a multiple of 4.
2221  * - R0 is marked dirty.
2222  */
2223  struct armv7a_common *armv7a = target_to_armv7a(target);
2224  int retval;
2225 
2226  /* Switch to fast mode if not already in that mode. */
2228  if (retval != ERROR_OK)
2229  return retval;
2230 
2231  /* Latch STC instruction. */
2232  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2233  armv7a->debug_base + CPUDBG_ITR, ARMV4_5_STC(0, 1, 0, 1, 14, 5, 0, 4));
2234  if (retval != ERROR_OK)
2235  return retval;
2236 
2237  /* Transfer all the data and issue all the instructions. */
2238  return mem_ap_write_buf_noincr(armv7a->debug_ap, buffer,
2239  4, count, armv7a->debug_base + CPUDBG_DTRRX);
2240 }
2241 
2243  uint32_t address, uint32_t size,
2244  uint32_t count, const uint8_t *buffer)
2245 {
2246  /* Write memory through the CPU. */
2247  int retval, final_retval;
2248  struct armv7a_common *armv7a = target_to_armv7a(target);
2249  struct arm *arm = &armv7a->arm;
2250  uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2251 
2252  LOG_DEBUG("Writing CPU memory address 0x%" PRIx32 " size %" PRIu32 " count %" PRIu32,
2253  address, size, count);
2254  if (target->state != TARGET_HALTED) {
2255  LOG_TARGET_ERROR(target, "not halted");
2256  return ERROR_TARGET_NOT_HALTED;
2257  }
2258 
2259  if (!count)
2260  return ERROR_OK;
2261 
2262  /* Clear any abort. */
2263  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2265  if (retval != ERROR_OK)
2266  return retval;
2267 
2268  /* Read DSCR. */
2269  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2270  armv7a->debug_base + CPUDBG_DSCR, &dscr);
2271  if (retval != ERROR_OK)
2272  return retval;
2273 
2274  /* Switch to non-blocking mode if not already in that mode. */
2276  if (retval != ERROR_OK)
2277  return retval;
2278 
2279  /* Mark R0 as dirty. */
2280  arm_reg_current(arm, 0)->dirty = true;
2281 
2282  /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2283  retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2284  if (retval != ERROR_OK)
2285  return retval;
2286 
2287  /* Get the memory address into R0. */
2288  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2289  armv7a->debug_base + CPUDBG_DTRRX, address);
2290  if (retval != ERROR_OK)
2291  return retval;
2292  retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2293  if (retval != ERROR_OK)
2294  return retval;
2295 
2296  if (size == 4 && (address % 4) == 0) {
2297  /* We are doing a word-aligned transfer, so use fast mode. */
2299  } else {
2300  /* Use slow path. Adjust size for aligned accesses */
2301  switch (address % 4) {
2302  case 1:
2303  case 3:
2304  count *= size;
2305  size = 1;
2306  break;
2307  case 2:
2308  if (size == 4) {
2309  count *= 2;
2310  size = 2;
2311  }
2312  case 0:
2313  default:
2314  break;
2315  }
2317  }
2318 
2319  final_retval = retval;
2320 
2321  /* Switch to non-blocking mode if not already in that mode. */
2323  if (final_retval == ERROR_OK)
2324  final_retval = retval;
2325 
2326  /* Wait for last issued instruction to complete. */
2327  retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2328  if (final_retval == ERROR_OK)
2329  final_retval = retval;
2330 
2331  /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
2332  * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2333  * check RXfull_l). Most of the time this will be free because RXfull_l
2334  * will be cleared immediately and cached in dscr. However, don't do this
2335  * if there is fault, because then the instruction might not have completed
2336  * successfully. */
2337  if (!(dscr & DSCR_STICKY_ABORT_PRECISE)) {
2339  if (retval != ERROR_OK)
2340  return retval;
2341  }
2342 
2343  /* If there were any sticky abort flags, clear them. */
2345  fault_dscr = dscr;
2349  } else {
2350  fault_dscr = 0;
2351  }
2352 
2353  /* Handle synchronous data faults. */
2354  if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2355  if (final_retval == ERROR_OK) {
2356  /* Final return value will reflect cause of fault. */
2357  retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2358  if (retval == ERROR_OK) {
2359  LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2360  final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2361  } else
2362  final_retval = retval;
2363  }
2364  /* Fault destroyed DFAR/DFSR; restore them. */
2365  retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2366  if (retval != ERROR_OK)
2367  LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2368  }
2369 
2370  /* Handle asynchronous data faults. */
2371  if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2372  if (final_retval == ERROR_OK)
2373  /* No other error has been recorded so far, so keep this one. */
2374  final_retval = ERROR_TARGET_DATA_ABORT;
2375  }
2376 
2377  /* If the DCC is nonempty, clear it. */
2378  if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2379  uint32_t dummy;
2380  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2381  armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2382  if (final_retval == ERROR_OK)
2383  final_retval = retval;
2384  }
2385  if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2386  retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2387  if (final_retval == ERROR_OK)
2388  final_retval = retval;
2389  }
2390 
2391  /* Done. */
2392  return final_retval;
2393 }
2394 
2396  uint32_t size, uint32_t count, uint8_t *buffer, uint32_t *dscr)
2397 {
2398  /* Reads count objects of size size into *buffer. Old value of DSCR must be
2399  * in *dscr; updated to new value. This is slow because it works for
2400  * non-word-sized objects. Avoid unaligned accesses as they do not work
2401  * on memory address space without "Normal" attribute. If size == 4 and
2402  * the address is aligned, cortex_a_read_cpu_memory_fast should be
2403  * preferred.
2404  * Preconditions:
2405  * - Address is in R0.
2406  * - R0 is marked dirty.
2407  */
2408  struct armv7a_common *armv7a = target_to_armv7a(target);
2409  struct arm *arm = &armv7a->arm;
2410  int retval;
2411 
2412  /* Mark register R1 as dirty, to use for transferring data. */
2413  arm_reg_current(arm, 1)->dirty = true;
2414 
2415  /* Switch to non-blocking mode if not already in that mode. */
2417  if (retval != ERROR_OK)
2418  return retval;
2419 
2420  /* Go through the objects. */
2421  while (count) {
2422  /* Issue a load of the appropriate size to R1. */
2423  uint32_t opcode, data;
2424  if (size == 1)
2425  opcode = ARMV4_5_LDRB_IP(1, 0);
2426  else if (size == 2)
2427  opcode = ARMV4_5_LDRH_IP(1, 0);
2428  else
2429  opcode = ARMV4_5_LDRW_IP(1, 0);
2430  retval = cortex_a_exec_opcode(target, opcode, dscr);
2431  if (retval != ERROR_OK)
2432  return retval;
2433 
2434  /* Issue a write of R1 to DTRTX. */
2435  retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 1, 0, 5, 0), dscr);
2436  if (retval != ERROR_OK)
2437  return retval;
2438 
2439  /* Check for faults and return early. */
2441  return ERROR_OK; /* A data fault is not considered a system failure. */
2442 
2443  /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
2444  * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2445  * must also check TXfull_l). Most of the time this will be free
2446  * because TXfull_l will be set immediately and cached in dscr. */
2448  DSCR_DTRTX_FULL_LATCHED, dscr);
2449  if (retval != ERROR_OK)
2450  return retval;
2451 
2452  /* Read the value transferred to DTRTX into the buffer. */
2453  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2454  armv7a->debug_base + CPUDBG_DTRTX, &data);
2455  if (retval != ERROR_OK)
2456  return retval;
2457  if (size == 1)
2458  *buffer = (uint8_t) data;
2459  else if (size == 2)
2460  target_buffer_set_u16(target, buffer, (uint16_t) data);
2461  else
2463 
2464  /* Advance. */
2465  buffer += size;
2466  --count;
2467  }
2468 
2469  return ERROR_OK;
2470 }
2471 
2473  uint32_t count, uint8_t *buffer, uint32_t *dscr)
2474 {
2475  /* Reads count objects of size 4 into *buffer. Old value of DSCR must be in
2476  * *dscr; updated to new value. This is fast but only works for word-sized
2477  * objects at aligned addresses.
2478  * Preconditions:
2479  * - Address is in R0 and must be a multiple of 4.
2480  * - R0 is marked dirty.
2481  */
2482  struct armv7a_common *armv7a = target_to_armv7a(target);
2483  uint32_t u32;
2484  int retval;
2485 
2486  /* Switch to non-blocking mode if not already in that mode. */
2488  if (retval != ERROR_OK)
2489  return retval;
2490 
2491  /* Issue the LDC instruction via a write to ITR. */
2492  retval = cortex_a_exec_opcode(target, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4), dscr);
2493  if (retval != ERROR_OK)
2494  return retval;
2495 
2496  count--;
2497 
2498  if (count > 0) {
2499  /* Switch to fast mode if not already in that mode. */
2501  if (retval != ERROR_OK)
2502  return retval;
2503 
2504  /* Latch LDC instruction. */
2505  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2506  armv7a->debug_base + CPUDBG_ITR, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4));
2507  if (retval != ERROR_OK)
2508  return retval;
2509 
2510  /* Read the value transferred to DTRTX into the buffer. Due to fast
2511  * mode rules, this blocks until the instruction finishes executing and
2512  * then reissues the read instruction to read the next word from
2513  * memory. The last read of DTRTX in this call reads the second-to-last
2514  * word from memory and issues the read instruction for the last word.
2515  */
2516  retval = mem_ap_read_buf_noincr(armv7a->debug_ap, buffer,
2517  4, count, armv7a->debug_base + CPUDBG_DTRTX);
2518  if (retval != ERROR_OK)
2519  return retval;
2520 
2521  /* Advance. */
2522  buffer += count * 4;
2523  }
2524 
2525  /* Wait for last issued instruction to complete. */
2526  retval = cortex_a_wait_instrcmpl(target, dscr, false);
2527  if (retval != ERROR_OK)
2528  return retval;
2529 
2530  /* Switch to non-blocking mode if not already in that mode. */
2532  if (retval != ERROR_OK)
2533  return retval;
2534 
2535  /* Check for faults and return early. */
2537  return ERROR_OK; /* A data fault is not considered a system failure. */
2538 
2539  /* Wait until DTRTX is full (according to ARMv7-A/-R architecture manual
2540  * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2541  * check TXfull_l). Most of the time this will be free because TXfull_l
2542  * will be set immediately and cached in dscr. */
2544  DSCR_DTRTX_FULL_LATCHED, dscr);
2545  if (retval != ERROR_OK)
2546  return retval;
2547 
2548  /* Read the value transferred to DTRTX into the buffer. This is the last
2549  * word. */
2550  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2551  armv7a->debug_base + CPUDBG_DTRTX, &u32);
2552  if (retval != ERROR_OK)
2553  return retval;
2555 
2556  return ERROR_OK;
2557 }
2558 
2560  uint32_t address, uint32_t size,
2561  uint32_t count, uint8_t *buffer)
2562 {
2563  /* Read memory through the CPU. */
2564  int retval, final_retval;
2565  struct armv7a_common *armv7a = target_to_armv7a(target);
2566  struct arm *arm = &armv7a->arm;
2567  uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2568 
2569  LOG_DEBUG("Reading CPU memory address 0x%" PRIx32 " size %" PRIu32 " count %" PRIu32,
2570  address, size, count);
2571  if (target->state != TARGET_HALTED) {
2572  LOG_TARGET_ERROR(target, "not halted");
2573  return ERROR_TARGET_NOT_HALTED;
2574  }
2575 
2576  if (!count)
2577  return ERROR_OK;
2578 
2579  /* Clear any abort. */
2580  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2582  if (retval != ERROR_OK)
2583  return retval;
2584 
2585  /* Read DSCR */
2586  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2587  armv7a->debug_base + CPUDBG_DSCR, &dscr);
2588  if (retval != ERROR_OK)
2589  return retval;
2590 
2591  /* Switch to non-blocking mode if not already in that mode. */
2593  if (retval != ERROR_OK)
2594  return retval;
2595 
2596  /* Mark R0 as dirty. */
2597  arm_reg_current(arm, 0)->dirty = true;
2598 
2599  /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2600  retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2601  if (retval != ERROR_OK)
2602  return retval;
2603 
2604  /* Get the memory address into R0. */
2605  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2606  armv7a->debug_base + CPUDBG_DTRRX, address);
2607  if (retval != ERROR_OK)
2608  return retval;
2609  retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2610  if (retval != ERROR_OK)
2611  return retval;
2612 
2613  if (size == 4 && (address % 4) == 0) {
2614  /* We are doing a word-aligned transfer, so use fast mode. */
2615  retval = cortex_a_read_cpu_memory_fast(target, count, buffer, &dscr);
2616  } else {
2617  /* Use slow path. Adjust size for aligned accesses */
2618  switch (address % 4) {
2619  case 1:
2620  case 3:
2621  count *= size;
2622  size = 1;
2623  break;
2624  case 2:
2625  if (size == 4) {
2626  count *= 2;
2627  size = 2;
2628  }
2629  break;
2630  case 0:
2631  default:
2632  break;
2633  }
2635  }
2636 
2637  final_retval = retval;
2638 
2639  /* Switch to non-blocking mode if not already in that mode. */
2641  if (final_retval == ERROR_OK)
2642  final_retval = retval;
2643 
2644  /* Wait for last issued instruction to complete. */
2645  retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2646  if (final_retval == ERROR_OK)
2647  final_retval = retval;
2648 
2649  /* If there were any sticky abort flags, clear them. */
2651  fault_dscr = dscr;
2655  } else {
2656  fault_dscr = 0;
2657  }
2658 
2659  /* Handle synchronous data faults. */
2660  if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2661  if (final_retval == ERROR_OK) {
2662  /* Final return value will reflect cause of fault. */
2663  retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2664  if (retval == ERROR_OK) {
2665  LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2666  final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2667  } else
2668  final_retval = retval;
2669  }
2670  /* Fault destroyed DFAR/DFSR; restore them. */
2671  retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2672  if (retval != ERROR_OK)
2673  LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2674  }
2675 
2676  /* Handle asynchronous data faults. */
2677  if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2678  if (final_retval == ERROR_OK)
2679  /* No other error has been recorded so far, so keep this one. */
2680  final_retval = ERROR_TARGET_DATA_ABORT;
2681  }
2682 
2683  /* If the DCC is nonempty, clear it. */
2684  if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2685  uint32_t dummy;
2686  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2687  armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2688  if (final_retval == ERROR_OK)
2689  final_retval = retval;
2690  }
2691  if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2692  retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2693  if (final_retval == ERROR_OK)
2694  final_retval = retval;
2695  }
2696 
2697  /* Done. */
2698  return final_retval;
2699 }
2700 
2701 
2702 /*
2703  * Cortex-A Memory access
2704  *
2705  * This is same Cortex-M3 but we must also use the correct
2706  * ap number for every access.
2707  */
2708 
2710  target_addr_t address, uint32_t size,
2711  uint32_t count, uint8_t *buffer)
2712 {
2713  int retval;
2714 
2715  if (!count || !buffer)
2717 
2718  LOG_DEBUG("Reading memory at real address " TARGET_ADDR_FMT "; size %" PRIu32 "; count %" PRIu32,
2719  address, size, count);
2720 
2721  /* read memory through the CPU */
2725 
2726  return retval;
2727 }
2728 
2730  uint32_t size, uint32_t count, uint8_t *buffer)
2731 {
2732  int retval;
2733 
2734  /* cortex_a handles unaligned memory access */
2735  LOG_DEBUG("Reading memory at address " TARGET_ADDR_FMT "; size %" PRIu32 "; count %" PRIu32,
2736  address, size, count);
2737 
2741 
2742  return retval;
2743 }
2744 
2746  target_addr_t address, uint32_t size,
2747  uint32_t count, const uint8_t *buffer)
2748 {
2749  int retval;
2750 
2751  if (!count || !buffer)
2753 
2754  LOG_DEBUG("Writing memory to real address " TARGET_ADDR_FMT "; size %" PRIu32 "; count %" PRIu32,
2755  address, size, count);
2756 
2757  /* write memory through the CPU */
2761 
2762  return retval;
2763 }
2764 
2766  uint32_t size, uint32_t count, const uint8_t *buffer)
2767 {
2768  int retval;
2769 
2770  /* cortex_a handles unaligned memory access */
2771  LOG_DEBUG("Writing memory at address " TARGET_ADDR_FMT "; size %" PRIu32 "; count %" PRIu32,
2772  address, size, count);
2773 
2777  return retval;
2778 }
2779 
2781  uint32_t count, uint8_t *buffer)
2782 {
2783  uint32_t size;
2784 
2785  /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2786  * will have something to do with the size we leave to it. */
2787  for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2788  if (address & size) {
2789  int retval = target_read_memory(target, address, size, 1, buffer);
2790  if (retval != ERROR_OK)
2791  return retval;
2792  address += size;
2793  count -= size;
2794  buffer += size;
2795  }
2796  }
2797 
2798  /* Read the data with as large access size as possible. */
2799  for (; size > 0; size /= 2) {
2800  uint32_t aligned = count - count % size;
2801  if (aligned > 0) {
2802  int retval = target_read_memory(target, address, size, aligned / size, buffer);
2803  if (retval != ERROR_OK)
2804  return retval;
2805  address += aligned;
2806  count -= aligned;
2807  buffer += aligned;
2808  }
2809  }
2810 
2811  return ERROR_OK;
2812 }
2813 
2815  uint32_t count, const uint8_t *buffer)
2816 {
2817  uint32_t size;
2818 
2819  /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2820  * will have something to do with the size we leave to it. */
2821  for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2822  if (address & size) {
2823  int retval = target_write_memory(target, address, size, 1, buffer);
2824  if (retval != ERROR_OK)
2825  return retval;
2826  address += size;
2827  count -= size;
2828  buffer += size;
2829  }
2830  }
2831 
2832  /* Write the data with as large access size as possible. */
2833  for (; size > 0; size /= 2) {
2834  uint32_t aligned = count - count % size;
2835  if (aligned > 0) {
2836  int retval = target_write_memory(target, address, size, aligned / size, buffer);
2837  if (retval != ERROR_OK)
2838  return retval;
2839  address += aligned;
2840  count -= aligned;
2841  buffer += aligned;
2842  }
2843  }
2844 
2845  return ERROR_OK;
2846 }
2847 
2849 {
2850  struct target *target = priv;
2851  struct armv7a_common *armv7a = target_to_armv7a(target);
2852  int retval;
2853 
2855  return ERROR_OK;
2856  if (!target->dbg_msg_enabled)
2857  return ERROR_OK;
2858 
2859  if (target->state == TARGET_RUNNING) {
2860  uint32_t request;
2861  uint32_t dscr;
2862  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2863  armv7a->debug_base + CPUDBG_DSCR, &dscr);
2864 
2865  /* check if we have data */
2866  int64_t then = timeval_ms();
2867  while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
2868  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2869  armv7a->debug_base + CPUDBG_DTRTX, &request);
2870  if (retval == ERROR_OK) {
2871  target_request(target, request);
2872  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2873  armv7a->debug_base + CPUDBG_DSCR, &dscr);
2874  }
2875  if (timeval_ms() > then + 1000) {
2876  LOG_ERROR("Timeout waiting for dtr tx full");
2877  return ERROR_FAIL;
2878  }
2879  }
2880  }
2881 
2882  return ERROR_OK;
2883 }
2884 
2885 /*
2886  * Cortex-A target information and configuration
2887  */
2888 
2890 {
2891  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
2892  struct armv7a_common *armv7a = &cortex_a->armv7a_common;
2893  struct adiv5_dap *swjdp = armv7a->arm.dap;
2895 
2896  int i;
2897  int retval = ERROR_OK;
2898  uint32_t didr, cpuid, dbg_osreg, dbg_idpfr1;
2899 
2900  if (!armv7a->debug_ap) {
2901  if (pc->ap_num == DP_APSEL_INVALID) {
2902  /* Search for the APB-AP - it is needed for access to debug registers */
2903  retval = dap_find_get_ap(swjdp, AP_TYPE_APB_AP, &armv7a->debug_ap);
2904  if (retval != ERROR_OK) {
2905  LOG_ERROR("Could not find APB-AP for debug access");
2906  return retval;
2907  }
2908  } else {
2909  armv7a->debug_ap = dap_get_ap(swjdp, pc->ap_num);
2910  if (!armv7a->debug_ap) {
2911  LOG_ERROR("Cannot get AP");
2912  return ERROR_FAIL;
2913  }
2914  }
2915  }
2916 
2917  retval = mem_ap_init(armv7a->debug_ap);
2918  if (retval != ERROR_OK) {
2919  LOG_ERROR("Could not initialize the APB-AP");
2920  return retval;
2921  }
2922 
2923  armv7a->debug_ap->memaccess_tck = 80;
2924 
2925  if (!target->dbgbase_set) {
2926  LOG_DEBUG("%s's dbgbase is not set, trying to detect using the ROM table",
2927  target->cmd_name);
2928  /* Lookup Processor DAP */
2930  &armv7a->debug_base, target->coreid);
2931  if (retval != ERROR_OK) {
2932  LOG_ERROR("Can't detect %s's dbgbase from the ROM table; you need to specify it explicitly.",
2933  target->cmd_name);
2934  return retval;
2935  }
2936  LOG_DEBUG("Detected core %" PRId32 " dbgbase: " TARGET_ADDR_FMT,
2937  target->coreid, armv7a->debug_base);
2938  } else
2939  armv7a->debug_base = target->dbgbase;
2940 
2941  if ((armv7a->debug_base & (1UL<<31)) == 0)
2942  LOG_WARNING("Debug base address for target %s has bit 31 set to 0. Access to debug registers will likely fail!\n"
2943  "Please fix the target configuration.", target_name(target));
2944 
2945  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2946  armv7a->debug_base + CPUDBG_DIDR, &didr);
2947  if (retval != ERROR_OK) {
2948  LOG_DEBUG("Examine %s failed", "DIDR");
2949  return retval;
2950  }
2951 
2952  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2953  armv7a->debug_base + CPUDBG_CPUID, &cpuid);
2954  if (retval != ERROR_OK) {
2955  LOG_DEBUG("Examine %s failed", "CPUID");
2956  return retval;
2957  }
2958 
2959  LOG_DEBUG("didr = 0x%08" PRIx32, didr);
2960  LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
2961 
2962  cortex_a->didr = didr;
2963  cortex_a->cpuid = cpuid;
2964 
2965  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2966  armv7a->debug_base + CPUDBG_PRSR, &dbg_osreg);
2967  if (retval != ERROR_OK)
2968  return retval;
2969  LOG_TARGET_DEBUG(target, "DBGPRSR 0x%" PRIx32, dbg_osreg);
2970 
2971  if ((dbg_osreg & PRSR_POWERUP_STATUS) == 0) {
2972  LOG_TARGET_ERROR(target, "powered down!");
2973  target->state = TARGET_UNKNOWN; /* TARGET_NO_POWER? */
2974  return ERROR_TARGET_INIT_FAILED;
2975  }
2976 
2977  if (dbg_osreg & PRSR_STICKY_RESET_STATUS)
2978  LOG_TARGET_DEBUG(target, "was reset!");
2979 
2980  /* Read DBGOSLSR and check if OSLK is implemented */
2981  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2982  armv7a->debug_base + CPUDBG_OSLSR, &dbg_osreg);
2983  if (retval != ERROR_OK)
2984  return retval;
2985  LOG_TARGET_DEBUG(target, "DBGOSLSR 0x%" PRIx32, dbg_osreg);
2986 
2987  /* check if OS Lock is implemented */
2988  if ((dbg_osreg & OSLSR_OSLM) == OSLSR_OSLM0 || (dbg_osreg & OSLSR_OSLM) == OSLSR_OSLM1) {
2989  /* check if OS Lock is set */
2990  if (dbg_osreg & OSLSR_OSLK) {
2991  LOG_TARGET_DEBUG(target, "OSLock set! Trying to unlock");
2992 
2993  retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2994  armv7a->debug_base + CPUDBG_OSLAR,
2995  0);
2996  if (retval == ERROR_OK)
2997  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2998  armv7a->debug_base + CPUDBG_OSLSR, &dbg_osreg);
2999 
3000  /* if we fail to access the register or cannot reset the OSLK bit, bail out */
3001  if (retval != ERROR_OK || (dbg_osreg & OSLSR_OSLK) != 0) {
3002  LOG_TARGET_ERROR(target, "OSLock sticky, core not powered?");
3003  target->state = TARGET_UNKNOWN; /* TARGET_NO_POWER? */
3004  return ERROR_TARGET_INIT_FAILED;
3005  }
3006  }
3007  }
3008 
3009  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3010  armv7a->debug_base + CPUDBG_ID_PFR1, &dbg_idpfr1);
3011  if (retval != ERROR_OK)
3012  return retval;
3013 
3014  if (dbg_idpfr1 & 0x000000f0) {
3015  LOG_TARGET_DEBUG(target, "has security extensions");
3017  }
3018  if (dbg_idpfr1 & 0x0000f000) {
3019  LOG_TARGET_DEBUG(target, "has virtualization extensions");
3020  /*
3021  * overwrite and simplify the checks.
3022  * virtualization extensions require implementation of security extension
3023  */
3025  }
3026 
3027  /* Avoid recreating the registers cache */
3028  if (!target_was_examined(target)) {
3029  retval = cortex_a_dpm_setup(cortex_a, didr);
3030  if (retval != ERROR_OK)
3031  return retval;
3032  }
3033 
3034  /* Setup Breakpoint Register Pairs */
3035  cortex_a->brp_num = ((didr >> 24) & 0x0F) + 1;
3036  cortex_a->brp_num_context = ((didr >> 20) & 0x0F) + 1;
3037  cortex_a->brp_num_available = cortex_a->brp_num;
3038  free(cortex_a->brp_list);
3039  cortex_a->brp_list = calloc(cortex_a->brp_num, sizeof(struct cortex_a_brp));
3040 /* cortex_a->brb_enabled = ????; */
3041  for (i = 0; i < cortex_a->brp_num; i++) {
3042  cortex_a->brp_list[i].used = false;
3043  if (i < (cortex_a->brp_num-cortex_a->brp_num_context))
3044  cortex_a->brp_list[i].type = BRP_NORMAL;
3045  else
3046  cortex_a->brp_list[i].type = BRP_CONTEXT;
3047  cortex_a->brp_list[i].value = 0;
3048  cortex_a->brp_list[i].control = 0;
3049  cortex_a->brp_list[i].brpn = i;
3050  }
3051 
3052  LOG_DEBUG("Configured %i hw breakpoints", cortex_a->brp_num);
3053 
3054  /* Setup Watchpoint Register Pairs */
3055  cortex_a->wrp_num = ((didr >> 28) & 0x0F) + 1;
3056  cortex_a->wrp_num_available = cortex_a->wrp_num;
3057  free(cortex_a->wrp_list);
3058  cortex_a->wrp_list = calloc(cortex_a->wrp_num, sizeof(struct cortex_a_wrp));
3059  for (i = 0; i < cortex_a->wrp_num; i++) {
3060  cortex_a->wrp_list[i].used = false;
3061  cortex_a->wrp_list[i].value = 0;
3062  cortex_a->wrp_list[i].control = 0;
3063  cortex_a->wrp_list[i].wrpn = i;
3064  }
3065 
3066  LOG_DEBUG("Configured %i hw watchpoints", cortex_a->wrp_num);
3067 
3068  /* select debug_ap as default */
3069  swjdp->apsel = armv7a->debug_ap->ap_num;
3070 
3072  return ERROR_OK;
3073 }
3074 
3075 static int cortex_a_examine(struct target *target)
3076 {
3077  int retval = ERROR_OK;
3078 
3079  /* Reestablish communication after target reset */
3080  retval = cortex_a_examine_first(target);
3081 
3082  /* Configure core debug access */
3083  if (retval == ERROR_OK)
3085 
3086  return retval;
3087 }
3088 
3089 /*
3090  * Cortex-A target creation and initialization
3091  */
3092 
3093 static int cortex_a_init_target(struct command_context *cmd_ctx,
3094  struct target *target)
3095 {
3096  /* examine_first() does a bunch of this */
3098  return ERROR_OK;
3099 }
3100 
3102  struct cortex_a_common *cortex_a, struct adiv5_dap *dap)
3103 {
3104  struct armv7a_common *armv7a = &cortex_a->armv7a_common;
3105 
3106  /* Setup struct cortex_a_common */
3107  cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
3108  armv7a->arm.dap = dap;
3109 
3110  /* register arch-specific functions */
3111  armv7a->examine_debug_reason = NULL;
3112 
3114 
3115  armv7a->pre_restore_context = NULL;
3116 
3118 
3119 
3120 /* arm7_9->handle_target_request = cortex_a_handle_target_request; */
3121 
3122  /* REVISIT v7a setup should be in a v7a-specific routine */
3123  armv7a_init_arch_info(target, armv7a);
3126 
3127  return ERROR_OK;
3128 }
3129 
3130 static int cortex_a_target_create(struct target *target, Jim_Interp *interp)
3131 {
3132  struct cortex_a_common *cortex_a;
3133  struct adiv5_private_config *pc;
3134 
3135  if (!target->private_config)
3136  return ERROR_FAIL;
3137 
3138  pc = (struct adiv5_private_config *)target->private_config;
3139 
3140  cortex_a = calloc(1, sizeof(struct cortex_a_common));
3141  if (!cortex_a) {
3142  LOG_ERROR("Out of memory");
3143  return ERROR_FAIL;
3144  }
3145  cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
3146  cortex_a->armv7a_common.is_armv7r = false;
3148 
3149  return cortex_a_init_arch_info(target, cortex_a, pc->dap);
3150 }
3151 
3152 static int cortex_r4_target_create(struct target *target, Jim_Interp *interp)
3153 {
3154  struct cortex_a_common *cortex_a;
3155  struct adiv5_private_config *pc;
3156 
3157  pc = (struct adiv5_private_config *)target->private_config;
3158  if (adiv5_verify_config(pc) != ERROR_OK)
3159  return ERROR_FAIL;
3160 
3161  cortex_a = calloc(1, sizeof(struct cortex_a_common));
3162  if (!cortex_a) {
3163  LOG_ERROR("Out of memory");
3164  return ERROR_FAIL;
3165  }
3166  cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
3167  cortex_a->armv7a_common.is_armv7r = true;
3168 
3169  return cortex_a_init_arch_info(target, cortex_a, pc->dap);
3170 }
3171 
3173 {
3174  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3175  struct armv7a_common *armv7a = &cortex_a->armv7a_common;
3176  struct arm_dpm *dpm = &armv7a->dpm;
3177  uint32_t dscr;
3178  int retval;
3179 
3180  if (target_was_examined(target)) {
3181  /* Disable halt for breakpoint, watchpoint and vector catch */
3182  retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3183  armv7a->debug_base + CPUDBG_DSCR, &dscr);
3184  if (retval == ERROR_OK)
3186  armv7a->debug_base + CPUDBG_DSCR,
3188  }
3189 
3190  if (armv7a->debug_ap)
3191  dap_put_ap(armv7a->debug_ap);
3192 
3193  free(cortex_a->wrp_list);
3194  free(cortex_a->brp_list);
3195  arm_free_reg_cache(dpm->arm);
3196  free(dpm->dbp);
3197  free(dpm->dwp);
3198  free(target->private_config);
3199  free(cortex_a);
3200 }
3201 
3202 static int cortex_a_mmu(struct target *target, int *enabled)
3203 {
3204  struct armv7a_common *armv7a = target_to_armv7a(target);
3205 
3206  if (target->state != TARGET_HALTED) {
3207  LOG_TARGET_ERROR(target, "not halted");
3208  return ERROR_TARGET_NOT_HALTED;
3209  }
3210 
3211  if (armv7a->is_armv7r)
3212  *enabled = 0;
3213  else
3215 
3216  return ERROR_OK;
3217 }
3218 
3219 static int cortex_a_virt2phys(struct target *target,
3220  target_addr_t virt, target_addr_t *phys)
3221 {
3222  int retval;
3223  int mmu_enabled = 0;
3224 
3225  /*
3226  * If the MMU was not enabled at debug entry, there is no
3227  * way of knowing if there was ever a valid configuration
3228  * for it and thus it's not safe to enable it. In this case,
3229  * just return the virtual address as physical.
3230  */
3231  cortex_a_mmu(target, &mmu_enabled);
3232  if (!mmu_enabled) {
3233  *phys = virt;
3234  return ERROR_OK;
3235  }
3236 
3237  /* mmu must be enable in order to get a correct translation */
3238  retval = cortex_a_mmu_modify(target, 1);
3239  if (retval != ERROR_OK)
3240  return retval;
3241  return armv7a_mmu_translate_va_pa(target, (uint32_t)virt,
3242  phys, 1);
3243 }
3244 
3245 COMMAND_HANDLER(cortex_a_handle_cache_info_command)
3246 {
3248  struct armv7a_common *armv7a = target_to_armv7a(target);
3249 
3251  &armv7a->armv7a_mmu.armv7a_cache);
3252 }
3253 
3254 
3255 COMMAND_HANDLER(cortex_a_handle_dbginit_command)
3256 {
3258  if (!target_was_examined(target)) {
3259  LOG_ERROR("target not examined yet");
3260  return ERROR_FAIL;
3261  }
3262 
3264 }
3265 
3266 COMMAND_HANDLER(handle_cortex_a_mask_interrupts_command)
3267 {
3269  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3270 
3271  static const struct nvp nvp_maskisr_modes[] = {
3272  { .name = "off", .value = CORTEX_A_ISRMASK_OFF },
3273  { .name = "on", .value = CORTEX_A_ISRMASK_ON },
3274  { .name = NULL, .value = -1 },
3275  };
3276  const struct nvp *n;
3277 
3278  if (CMD_ARGC > 0) {
3279  n = nvp_name2value(nvp_maskisr_modes, CMD_ARGV[0]);
3280  if (!n->name) {
3281  LOG_ERROR("Unknown parameter: %s - should be off or on", CMD_ARGV[0]);
3283  }
3284 
3285  cortex_a->isrmasking_mode = n->value;
3286  }
3287 
3288  n = nvp_value2name(nvp_maskisr_modes, cortex_a->isrmasking_mode);
3289  command_print(CMD, "cortex_a interrupt mask %s", n->name);
3290 
3291  return ERROR_OK;
3292 }
3293 
3294 COMMAND_HANDLER(handle_cortex_a_dacrfixup_command)
3295 {
3297  struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3298 
3299  static const struct nvp nvp_dacrfixup_modes[] = {
3300  { .name = "off", .value = CORTEX_A_DACRFIXUP_OFF },
3301  { .name = "on", .value = CORTEX_A_DACRFIXUP_ON },
3302  { .name = NULL, .value = -1 },
3303  };
3304  const struct nvp *n;
3305 
3306  if (CMD_ARGC > 0) {
3307  n = nvp_name2value(nvp_dacrfixup_modes, CMD_ARGV[0]);
3308  if (!n->name)
3310  cortex_a->dacrfixup_mode = n->value;
3311 
3312  }
3313 
3314  n = nvp_value2name(nvp_dacrfixup_modes, cortex_a->dacrfixup_mode);
3315  command_print(CMD, "cortex_a domain access control fixup %s", n->name);
3316 
3317  return ERROR_OK;
3318 }
3319 
3320 static const struct command_registration cortex_a_exec_command_handlers[] = {
3321  {
3322  .name = "cache_info",
3323  .handler = cortex_a_handle_cache_info_command,
3324  .mode = COMMAND_EXEC,
3325  .help = "display information about target caches",
3326  .usage = "",
3327  },
3328  {
3329  .name = "dbginit",
3330  .handler = cortex_a_handle_dbginit_command,
3331  .mode = COMMAND_EXEC,
3332  .help = "Initialize core debug",
3333  .usage = "",
3334  },
3335  {
3336  .name = "maskisr",
3337  .handler = handle_cortex_a_mask_interrupts_command,
3338  .mode = COMMAND_ANY,
3339  .help = "mask cortex_a interrupts",
3340  .usage = "['on'|'off']",
3341  },
3342  {
3343  .name = "dacrfixup",
3344  .handler = handle_cortex_a_dacrfixup_command,
3345  .mode = COMMAND_ANY,
3346  .help = "set domain access control (DACR) to all-manager "
3347  "on memory access",
3348  .usage = "['on'|'off']",
3349  },
3350  {
3351  .chain = armv7a_mmu_command_handlers,
3352  },
3353  {
3355  },
3356 
3358 };
3359 static const struct command_registration cortex_a_command_handlers[] = {
3360  {
3362  },
3363  {
3365  },
3366  {
3367  .name = "cortex_a",
3368  .mode = COMMAND_ANY,
3369  .help = "Cortex-A command group",
3370  .usage = "",
3372  },
3374 };
3375 
3376 struct target_type cortexa_target = {
3377  .name = "cortex_a",
3378 
3379  .poll = cortex_a_poll,
3380  .arch_state = armv7a_arch_state,
3381 
3382  .halt = cortex_a_halt,
3383  .resume = cortex_a_resume,
3384  .step = cortex_a_step,
3385 
3386  .assert_reset = cortex_a_assert_reset,
3387  .deassert_reset = cortex_a_deassert_reset,
3388 
3389  /* REVISIT allow exporting VFP3 registers ... */
3390  .get_gdb_arch = arm_get_gdb_arch,
3391  .get_gdb_reg_list = arm_get_gdb_reg_list,
3392 
3393  .read_memory = cortex_a_read_memory,
3394  .write_memory = cortex_a_write_memory,
3395 
3396  .read_buffer = cortex_a_read_buffer,
3397  .write_buffer = cortex_a_write_buffer,
3398 
3399  .checksum_memory = arm_checksum_memory,
3400  .blank_check_memory = arm_blank_check_memory,
3401 
3402  .run_algorithm = armv4_5_run_algorithm,
3403 
3404  .add_breakpoint = cortex_a_add_breakpoint,
3405  .add_context_breakpoint = cortex_a_add_context_breakpoint,
3406  .add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
3407  .remove_breakpoint = cortex_a_remove_breakpoint,
3408  .add_watchpoint = cortex_a_add_watchpoint,
3409  .remove_watchpoint = cortex_a_remove_watchpoint,
3410 
3411  .commands = cortex_a_command_handlers,
3412  .target_create = cortex_a_target_create,
3413  .target_jim_configure = adiv5_jim_configure,
3414  .init_target = cortex_a_init_target,
3415  .examine = cortex_a_examine,
3416  .deinit_target = cortex_a_deinit_target,
3417 
3418  .read_phys_memory = cortex_a_read_phys_memory,
3419  .write_phys_memory = cortex_a_write_phys_memory,
3420  .mmu = cortex_a_mmu,
3421  .virt2phys = cortex_a_virt2phys,
3422 };
3423 
3424 static const struct command_registration cortex_r4_exec_command_handlers[] = {
3425  {
3426  .name = "dbginit",
3427  .handler = cortex_a_handle_dbginit_command,
3428  .mode = COMMAND_EXEC,
3429  .help = "Initialize core debug",
3430  .usage = "",
3431  },
3432  {
3433  .name = "maskisr",
3434  .handler = handle_cortex_a_mask_interrupts_command,
3435  .mode = COMMAND_EXEC,
3436  .help = "mask cortex_r4 interrupts",
3437  .usage = "['on'|'off']",
3438  },
3439 
3441 };
3442 static const struct command_registration cortex_r4_command_handlers[] = {
3443  {
3445  },
3446  {
3447  .name = "cortex_r4",
3448  .mode = COMMAND_ANY,
3449  .help = "Cortex-R4 command group",
3450  .usage = "",
3452  },
3454 };
3455 
3456 struct target_type cortexr4_target = {
3457  .name = "cortex_r4",
3458 
3459  .poll = cortex_a_poll,
3460  .arch_state = armv7a_arch_state,
3461 
3462  .halt = cortex_a_halt,
3463  .resume = cortex_a_resume,
3464  .step = cortex_a_step,
3465 
3466  .assert_reset = cortex_a_assert_reset,
3467  .deassert_reset = cortex_a_deassert_reset,
3468 
3469  /* REVISIT allow exporting VFP3 registers ... */
3470  .get_gdb_arch = arm_get_gdb_arch,
3471  .get_gdb_reg_list = arm_get_gdb_reg_list,
3472 
3473  .read_memory = cortex_a_read_phys_memory,
3474  .write_memory = cortex_a_write_phys_memory,
3475 
3476  .checksum_memory = arm_checksum_memory,
3477  .blank_check_memory = arm_blank_check_memory,
3478 
3479  .run_algorithm = armv4_5_run_algorithm,
3480 
3481  .add_breakpoint = cortex_a_add_breakpoint,
3482  .add_context_breakpoint = cortex_a_add_context_breakpoint,
3483  .add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
3484  .remove_breakpoint = cortex_a_remove_breakpoint,
3485  .add_watchpoint = cortex_a_add_watchpoint,
3486  .remove_watchpoint = cortex_a_remove_watchpoint,
3487 
3488  .commands = cortex_r4_command_handlers,
3489  .target_create = cortex_r4_target_create,
3490  .target_jim_configure = adiv5_jim_configure,
3491  .init_target = cortex_a_init_target,
3492  .examine = cortex_a_examine,
3493  .deinit_target = cortex_a_deinit_target,
3494 };
#define BRP_CONTEXT
Definition: aarch64.h:23
#define CPUDBG_CPUID
Definition: aarch64.h:14
#define BRP_NORMAL
Definition: aarch64.h:22
#define CPUDBG_LOCKACCESS
Definition: aarch64.h:19
int arm_blank_check_memory(struct target *target, struct target_memory_check_block *blocks, int num_blocks, uint8_t erased_value)
Runs ARM code in the target to check whether a memory block holds all ones.
Definition: armv4_5.c:1687
struct reg * arm_reg_current(struct arm *arm, unsigned int regnum)
Returns handle to the register currently mapped to a given number.
Definition: armv4_5.c:516
@ ARM_VFP_V3
Definition: arm.h:163
int arm_checksum_memory(struct target *target, target_addr_t address, uint32_t count, uint32_t *checksum)
Runs ARM code in the target to calculate a CRC32 checksum.
Definition: armv4_5.c:1614
const char * arm_get_gdb_arch(const struct target *target)
Definition: armv4_5.c:1281
int arm_get_gdb_reg_list(struct target *target, struct reg **reg_list[], int *reg_list_size, enum target_register_class reg_class)
Definition: armv4_5.c:1286
@ ARM_MODE_ANY
Definition: arm.h:106
@ ARM_MODE_SVC
Definition: arm.h:86
void arm_free_reg_cache(struct arm *arm)
Definition: armv4_5.c:775
@ ARM_STATE_JAZELLE
Definition: arm.h:153
@ ARM_STATE_THUMB
Definition: arm.h:152
@ ARM_STATE_ARM
Definition: arm.h:151
@ ARM_STATE_AARCH64
Definition: arm.h:155
@ ARM_STATE_THUMB_EE
Definition: arm.h:154
const struct command_registration arm_command_handlers[]
Definition: armv4_5.c:1261
int armv4_5_run_algorithm(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_params, target_addr_t entry_point, target_addr_t exit_point, unsigned int timeout_ms, void *arch_info)
Definition: armv4_5.c:1588
@ ARM_CORE_TYPE_SEC_EXT
Definition: arm.h:47
@ ARM_CORE_TYPE_VIRT_EXT
Definition: arm.h:48
int dap_lookup_cs_component(struct adiv5_ap *ap, uint8_t type, target_addr_t *addr, int32_t core_id)
Definition: arm_adi_v5.c:2287
int mem_ap_read_buf_noincr(struct adiv5_ap *ap, uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
Definition: arm_adi_v5.c:734
int adiv5_verify_config(struct adiv5_private_config *pc)
Definition: arm_adi_v5.c:2486
int mem_ap_write_u32(struct adiv5_ap *ap, target_addr_t address, uint32_t value)
Asynchronous (queued) write of a word to memory or a system register.
Definition: arm_adi_v5.c:289
int adiv5_jim_configure(struct target *target, struct jim_getopt_info *goi)
Definition: arm_adi_v5.c:2481
int dap_find_get_ap(struct adiv5_dap *dap, enum ap_type type_to_find, struct adiv5_ap **ap_out)
Definition: arm_adi_v5.c:1107
int mem_ap_write_buf_noincr(struct adiv5_ap *ap, const uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
Definition: arm_adi_v5.c:740
int mem_ap_read_atomic_u32(struct adiv5_ap *ap, target_addr_t address, uint32_t *value)
Synchronous read of a word from memory or a system register.
Definition: arm_adi_v5.c:266
struct adiv5_ap * dap_get_ap(struct adiv5_dap *dap, uint64_t ap_num)
Definition: arm_adi_v5.c:1189
int dap_put_ap(struct adiv5_ap *ap)
Definition: arm_adi_v5.c:1209
int mem_ap_init(struct adiv5_ap *ap)
Initialize a DAP.
Definition: arm_adi_v5.c:888
int mem_ap_write_atomic_u32(struct adiv5_ap *ap, target_addr_t address, uint32_t value)
Synchronous write of a word to memory or a system register.
Definition: arm_adi_v5.c:318
@ AP_TYPE_APB_AP
Definition: arm_adi_v5.h:491
#define DP_APSEL_INVALID
Definition: arm_adi_v5.h:110
static int dap_run(struct adiv5_dap *dap)
Perform all queued DAP operations, and clear any errors posted in the CTRL_STAT register when they ar...
Definition: arm_adi_v5.h:648
#define ARM_CS_C9_DEVTYPE_CORE_DEBUG
Definition: arm_coresight.h:88
void arm_dpm_report_dscr(struct arm_dpm *dpm, uint32_t dscr)
Definition: arm_dpm.c:1055
int arm_dpm_read_current_registers(struct arm_dpm *dpm)
Read basic registers of the current context: R0 to R15, and CPSR; sets the core mode (such as USR or ...
Definition: arm_dpm.c:377
int arm_dpm_modeswitch(struct arm_dpm *dpm, enum arm_mode mode)
Definition: arm_dpm.c:146
int arm_dpm_setup(struct arm_dpm *dpm)
Hooks up this DPM to its associated target; call only once.
Definition: arm_dpm.c:1093
int arm_dpm_read_reg(struct arm_dpm *dpm, struct reg *r, unsigned int regnum)
Definition: arm_dpm.c:208
int arm_dpm_write_dirty_registers(struct arm_dpm *dpm, bool bpwp)
Writes all modified core registers for all processor modes.
Definition: arm_dpm.c:485
void arm_dpm_report_wfar(struct arm_dpm *dpm, uint32_t addr)
Definition: arm_dpm.c:1031
int arm_dpm_initialize(struct arm_dpm *dpm)
Reinitializes DPM state at the beginning of a new debug session or after a reset which may have affec...
Definition: arm_dpm.c:1160
#define OSLSR_OSLM
Definition: arm_dpm.h:248
#define DRCR_HALT
Definition: arm_dpm.h:223
#define DSCR_INSTR_COMP
Definition: arm_dpm.h:190
#define DRCR_CLEAR_EXCEPTIONS
Definition: arm_dpm.h:225
#define DSCR_INT_DIS
Definition: arm_dpm.h:180
#define OSLSR_OSLM0
Definition: arm_dpm.h:244
#define DSCR_STICKY_ABORT_IMPRECISE
Definition: arm_dpm.h:176
#define DSCR_EXT_DCC_FAST_MODE
Definition: arm_dpm.h:216
#define OSLSR_OSLK
Definition: arm_dpm.h:245
#define DSCR_DTR_TX_FULL
Definition: arm_dpm.h:194
#define DSCR_DTRRX_FULL_LATCHED
Definition: arm_dpm.h:193
#define DRCR_RESTART
Definition: arm_dpm.h:224
#define DSCR_RUN_MODE(dscr)
Definition: arm_dpm.h:198
#define DSCR_STICKY_ABORT_PRECISE
Definition: arm_dpm.h:175
#define OSLSR_OSLM1
Definition: arm_dpm.h:247
#define DSCR_CORE_HALTED
Definition: arm_dpm.h:172
#define DSCR_ITR_EN
Definition: arm_dpm.h:182
#define DSCR_EXT_DCC_NON_BLOCKING
Definition: arm_dpm.h:214
#define PRSR_STICKY_RESET_STATUS
Definition: arm_dpm.h:238
#define PRSR_POWERUP_STATUS
Definition: arm_dpm.h:235
#define DSCR_EXT_DCC_MASK
Definition: arm_dpm.h:189
#define DSCR_DTR_RX_FULL
Definition: arm_dpm.h:195
#define DSCR_CORE_RESTARTED
Definition: arm_dpm.h:173
#define DSCR_HALT_DBG_MODE
Definition: arm_dpm.h:183
#define DSCR_DTRTX_FULL_LATCHED
Definition: arm_dpm.h:192
Macros used to generate various ARM or Thumb opcodes.
#define ARMV5_BKPT(im)
Definition: arm_opcodes.h:227
#define ARMV4_5_STC(p, u, d, w, cp, crd, rn, imm)
Definition: arm_opcodes.h:159
#define ARMV5_T_BKPT(im)
Definition: arm_opcodes.h:313
#define ARMV4_5_LDC(p, u, d, w, cp, crd, rn, imm)
Definition: arm_opcodes.h:174
#define ARMV4_5_MRC(cp, op1, rd, crn, crm, op2)
Definition: arm_opcodes.h:186
#define ARMV4_5_STRH_IP(rd, rn)
Definition: arm_opcodes.h:105
#define ARMV4_5_MCR(cp, op1, rd, crn, crm, op2)
Definition: arm_opcodes.h:209
#define ARMV4_5_LDRH_IP(rd, rn)
Definition: arm_opcodes.h:87
#define ARMV4_5_LDRB_IP(rd, rn)
Definition: arm_opcodes.h:93
#define ARMV4_5_LDRW_IP(rd, rn)
Definition: arm_opcodes.h:81
#define ARMV4_5_STRW_IP(rd, rn)
Definition: arm_opcodes.h:99
#define ARMV4_5_STRB_IP(rd, rn)
Definition: arm_opcodes.h:111
int arm_semihosting(struct target *target, int *retval)
Checks for and processes an ARM semihosting request.
int arm_semihosting_init(struct target *target)
Initialize ARM semihosting support.
enum arm_mode mode
Definition: armv4_5.c:281
int armv7a_handle_cache_info_command(struct command_invocation *cmd, struct armv7a_cache_common *armv7a_cache)
Definition: armv7a.c:230
int armv7a_read_ttbcr(struct target *target)
Definition: armv7a.c:118
int armv7a_arch_state(struct target *target)
Definition: armv7a.c:531
const struct command_registration armv7a_command_handlers[]
Definition: armv7a.c:587
int armv7a_init_arch_info(struct target *target, struct armv7a_common *armv7a)
Definition: armv7a.c:515
int armv7a_identify_cache(struct target *target)
Definition: armv7a.c:364
#define CPUDBG_DSMCR
Definition: armv7a.h:164
#define CPUDBG_DSCCR
Definition: armv7a.h:163
#define CPUDBG_OSLAR
Definition: armv7a.h:157
#define CPUDBG_BCR_BASE
Definition: armv7a.h:151
#define CPUDBG_OSLSR
Definition: armv7a.h:158
#define CPUDBG_DSCR
Definition: armv7a.h:139
#define CPUDBG_DRCR
Definition: armv7a.h:140
#define CPUDBG_DIDR
Definition: armv7a.h:134
#define CPUDBG_WCR_BASE
Definition: armv7a.h:153
#define CPUDBG_DTRTX
Definition: armv7a.h:147
static struct armv7a_common * target_to_armv7a(struct target *target)
Definition: armv7a.h:120
#define CPUDBG_WVR_BASE
Definition: armv7a.h:152
#define CPUDBG_WFAR
Definition: armv7a.h:137
#define CPUDBG_BVR_BASE
Definition: armv7a.h:150
#define CPUDBG_DTRRX
Definition: armv7a.h:145
#define CPUDBG_PRSR
Definition: armv7a.h:142
#define CPUDBG_ITR
Definition: armv7a.h:146
#define CPUDBG_ID_PFR1
Definition: armv7a.h:170
int armv7a_l1_i_cache_inval_virt(struct target *target, uint32_t virt, uint32_t size)
Definition: armv7a_cache.c:335
int armv7a_cache_flush_virt(struct target *target, uint32_t virt, uint32_t size)
Definition: armv7a_cache.c:384
int armv7a_l1_d_cache_inval_virt(struct target *target, uint32_t virt, uint32_t size)
Definition: armv7a_cache.c:146
const struct command_registration armv7a_mmu_command_handlers[]
Definition: armv7a_mmu.c:359
int armv7a_mmu_translate_va_pa(struct target *target, uint32_t va, target_addr_t *val, int meminfo)
Definition: armv7a_mmu.c:27
@ ARMV7M_PRIMASK
Definition: armv7m.h:145
@ ARMV7M_XPSR
Definition: armv7m.h:128
static uint32_t buf_get_u32(const uint8_t *_buffer, unsigned int first, unsigned int num)
Retrieves num bits from _buffer, starting at the first bit, returning the bits in a 32-bit word.
Definition: binarybuffer.h:104
static void buf_set_u32(uint8_t *_buffer, unsigned int first, unsigned int num, uint32_t value)
Sets num bits in _buffer, starting at the first bit, using the bits in value.
Definition: binarybuffer.h:34
struct breakpoint * breakpoint_find(struct target *target, target_addr_t address)
Definition: breakpoints.c:489
@ BKPT_HARD
Definition: breakpoints.h:18
@ BKPT_SOFT
Definition: breakpoints.h:19
static void watchpoint_set(struct watchpoint *watchpoint, unsigned int number)
Definition: breakpoints.h:83
static void breakpoint_hw_set(struct breakpoint *breakpoint, unsigned int hw_number)
Definition: breakpoints.h:66
void command_print(struct command_invocation *cmd, const char *format,...)
Definition: command.c:443
#define CMD
Use this macro to access the command being handled, rather than accessing the variable directly.
Definition: command.h:141
#define CMD_ARGV
Use this macro to access the arguments for the command being handled, rather than accessing the varia...
Definition: command.h:156
#define ERROR_COMMAND_SYNTAX_ERROR
Definition: command.h:402
#define CMD_ARGC
Use this macro to access the number of arguments for the command being handled, rather than accessing...
Definition: command.h:151
#define CMD_CTX
Use this macro to access the context of the command being handled, rather than accessing the variable...
Definition: command.h:146
#define COMMAND_REGISTRATION_DONE
Use this as the last entry in an array of command_registration records.
Definition: command.h:253
@ COMMAND_ANY
Definition: command.h:42
@ COMMAND_EXEC
Definition: command.h:40
static int cortex_a_dpm_finish(struct arm_dpm *dpm)
Definition: cortex_a.c:397
static int cortex_a_read_phys_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
Definition: cortex_a.c:2709
static int cortex_a_mmu(struct target *target, int *enabled)
Definition: cortex_a.c:3202
static int cortex_a_target_create(struct target *target, Jim_Interp *interp)
Definition: cortex_a.c:3130
static int cortex_a_dpm_prepare(struct arm_dpm *dpm)
Definition: cortex_a.c:369
static int cortex_a_exec_opcode(struct target *target, uint32_t opcode, uint32_t *dscr_p)
Definition: cortex_a.c:283
static const struct command_registration cortex_a_command_handlers[]
Definition: cortex_a.c:3359
static int cortex_a_write_dcc(struct cortex_a_common *a, uint32_t data)
Definition: cortex_a.c:333
static int cortex_a_write_dfar_dfsr(struct target *target, uint32_t dfar, uint32_t dfsr, uint32_t *dscr)
Definition: cortex_a.c:2094
static int cortex_a_dpm_setup(struct cortex_a_common *a, uint32_t didr)
Definition: cortex_a.c:633
static int cortex_a_write_buffer(struct target *target, target_addr_t address, uint32_t count, const uint8_t *buffer)
Definition: cortex_a.c:2814
static int cortex_a_restore_smp(struct target *target, bool handle_breakpoints)
Definition: cortex_a.c:968
static int cortex_a_read_buffer(struct target *target, target_addr_t address, uint32_t count, uint8_t *buffer)
Definition: cortex_a.c:2780
static int cortex_a_init_debug_access(struct target *target)
Definition: cortex_a.c:208
static int cortex_a_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
Remove a watchpoint from an Cortex-A target.
Definition: cortex_a.c:1867
static int cortex_a_instr_cpsr_sync(struct arm_dpm *dpm)
Definition: cortex_a.c:483
static const struct command_registration cortex_r4_exec_command_handlers[]
Definition: cortex_a.c:3424
static const struct command_registration cortex_a_exec_command_handlers[]
Definition: cortex_a.c:3320
static int cortex_a_read_cpu_memory_slow(struct target *target, uint32_t size, uint32_t count, uint8_t *buffer, uint32_t *dscr)
Definition: cortex_a.c:2395
static int cortex_a_read_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
Definition: cortex_a.c:2729
static int cortex_a_read_copro(struct target *target, uint32_t opcode, uint32_t *data, uint32_t *dscr)
Definition: cortex_a.c:2007
static int cortex_a_instr_read_data_r0_r1(struct arm_dpm *dpm, uint32_t opcode, uint64_t *data)
Definition: cortex_a.c:551
static int cortex_a_instr_read_data_dcc(struct arm_dpm *dpm, uint32_t opcode, uint32_t *data)
Definition: cortex_a.c:494
static int cortex_a_restore_context(struct target *target, bool bpwp)
Definition: cortex_a.c:1264
static int cortex_a_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
Definition: cortex_a.c:1663
static int cortex_a_step(struct target *target, bool current, target_addr_t address, bool handle_breakpoints)
Definition: cortex_a.c:1172
static int cortex_a_handle_target_request(void *priv)
Definition: cortex_a.c:2848
static int cortex_a_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
Add a watchpoint to an Cortex-A target.
Definition: cortex_a.c:1842
static int cortex_a_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
Sets a watchpoint for an Cortex-A target in one of the watchpoint units.
Definition: cortex_a.c:1695
static int cortex_a_init_arch_info(struct target *target, struct cortex_a_common *cortex_a, struct adiv5_dap *dap)
Definition: cortex_a.c:3101
static int cortex_a_instr_write_data_r0(struct arm_dpm *dpm, uint32_t opcode, uint32_t data)
Definition: cortex_a.c:441
static int cortex_a_post_debug_entry(struct target *target)
Definition: cortex_a.c:1102
struct target_type cortexr4_target
Definition: cortex_a.c:3456
static int update_halt_gdb(struct target *target)
Definition: cortex_a.c:689
static int cortex_a_read_cpu_memory_fast(struct target *target, uint32_t count, uint8_t *buffer, uint32_t *dscr)
Definition: cortex_a.c:2472
static int cortex_a_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
Definition: cortex_a.c:1419
static int cortex_r4_target_create(struct target *target, Jim_Interp *interp)
Definition: cortex_a.c:3152
static int cortex_a_add_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
Definition: cortex_a.c:1646
static int cortex_a_examine(struct target *target)
Definition: cortex_a.c:3075
static int cortex_a_write_cpu_memory_slow(struct target *target, uint32_t size, uint32_t count, const uint8_t *buffer, uint32_t *dscr)
Definition: cortex_a.c:2137
static int cortex_a_halt_smp(struct target *target)
Definition: cortex_a.c:675
static int cortex_a_add_context_breakpoint(struct target *target, struct breakpoint *breakpoint)
Definition: cortex_a.c:1630
static int cortex_a_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
Definition: cortex_a.c:1500
static int cortex_a_set_dscr_bits(struct target *target, unsigned long bit_mask, unsigned long value)
Definition: cortex_a.c:1149
static int cortex_a_deassert_reset(struct target *target)
Definition: cortex_a.c:1923
static int cortex_a_write_copro(struct target *target, uint32_t opcode, uint32_t data, uint32_t *dscr)
Definition: cortex_a.c:2061
static int cortex_a_read_dfar_dfsr(struct target *target, uint32_t *dfar, uint32_t *dfsr, uint32_t *dscr)
Definition: cortex_a.c:2041
static int cortex_a_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
Unset an existing watchpoint and clear the used watchpoint unit.
Definition: cortex_a.c:1797
static int cortex_a_set_dcc_mode(struct target *target, uint32_t mode, uint32_t *dscr)
Definition: cortex_a.c:1956
static int cortex_a_bpwp_enable(struct arm_dpm *dpm, unsigned int index_t, uint32_t addr, uint32_t control)
Definition: cortex_a.c:574
static int cortex_a_mmu_modify(struct target *target, int enable)
Definition: cortex_a.c:168
static int cortex_a_internal_restore(struct target *target, bool current, target_addr_t *address, bool handle_breakpoints, bool debug_execution)
Definition: cortex_a.c:820
static int cortex_a_virt2phys(struct target *target, target_addr_t virt, target_addr_t *phys)
Definition: cortex_a.c:3219
static int cortex_a_examine_first(struct target *target)
Definition: cortex_a.c:2889
static int cortex_a_instr_read_data_r0(struct arm_dpm *dpm, uint32_t opcode, uint32_t *data)
Definition: cortex_a.c:532
static int cortex_a_wait_instrcmpl(struct target *target, uint32_t *dscr, bool force)
Definition: cortex_a.c:255
static int cortex_a_init_target(struct command_context *cmd_ctx, struct target *target)
Definition: cortex_a.c:3093
static int cortex_a_poll(struct target *target)
Definition: cortex_a.c:735
static void cortex_a_deinit_target(struct target *target)
Definition: cortex_a.c:3172
static int cortex_a_bpwp_disable(struct arm_dpm *dpm, unsigned int index_t)
Definition: cortex_a.c:609
static int cortex_a_restore_cp15_control_reg(struct target *target)
Definition: cortex_a.c:90
static const struct command_registration cortex_r4_command_handlers[]
Definition: cortex_a.c:3442
static int cortex_a_post_memaccess(struct target *target, int phys_access)
Definition: cortex_a.c:142
static int cortex_a_write_cpu_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
Definition: cortex_a.c:2242
COMMAND_HANDLER(cortex_a_handle_cache_info_command)
Definition: cortex_a.c:3245
static int cortex_a_set_breakpoint(struct target *target, struct breakpoint *breakpoint, uint8_t matchmode)
Definition: cortex_a.c:1281
static int cortex_a_halt(struct target *target)
Definition: cortex_a.c:792
static int cortex_a_instr_write_data_dcc(struct arm_dpm *dpm, uint32_t opcode, uint32_t data)
Definition: cortex_a.c:403
static int cortex_a_read_dcc(struct cortex_a_common *a, uint32_t *data, uint32_t *dscr_p)
Definition: cortex_a.c:340
static int cortex_a_write_cpu_memory_fast(struct target *target, uint32_t count, const uint8_t *buffer, uint32_t *dscr)
Definition: cortex_a.c:2213
static int cortex_a_set_context_breakpoint(struct target *target, struct breakpoint *breakpoint, uint8_t matchmode)
Definition: cortex_a.c:1370
static int cortex_a_prep_memaccess(struct target *target, int phys_access)
Definition: cortex_a.c:112
static int cortex_a_read_cpu_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
Definition: cortex_a.c:2559
static int cortex_a_internal_restart(struct target *target)
Definition: cortex_a.c:918
static int cortex_a_dfsr_to_error_code(uint32_t dfsr)
Definition: cortex_a.c:2110
static int cortex_a_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
Definition: cortex_a.c:1614
static int cortex_a_instr_write_data_r0_r1(struct arm_dpm *dpm, uint32_t opcode, uint64_t data)
Definition: cortex_a.c:461
static int cortex_a_instr_write_data_rt_dcc(struct arm_dpm *dpm, uint8_t rt, uint32_t data)
Definition: cortex_a.c:420
static int cortex_a_debug_entry(struct target *target)
Definition: cortex_a.c:1023
static int cortex_a_write_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
Definition: cortex_a.c:2765
static int cortex_a_resume(struct target *target, bool current, target_addr_t address, bool handle_breakpoints, bool debug_execution)
Definition: cortex_a.c:987
static int cortex_a_instr_read_data_rt_dcc(struct arm_dpm *dpm, uint8_t rt, uint32_t *data)
Definition: cortex_a.c:512
static int cortex_a_wait_dscr_bits(struct target *target, uint32_t mask, uint32_t value, uint32_t *dscr)
Definition: cortex_a.c:1978
static struct cortex_a_common * dpm_to_a(struct arm_dpm *dpm)
Definition: cortex_a.c:328
static int cortex_a_write_phys_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
Definition: cortex_a.c:2745
static int cortex_a_assert_reset(struct target *target)
Definition: cortex_a.c:1883
struct target_type cortexa_target
Definition: cortex_a.c:3376
static struct target * get_cortex_a(struct target *target, int32_t coreid)
Definition: cortex_a.c:662
static unsigned int ilog2(unsigned int x)
Definition: cortex_a.c:78
static struct cortex_a_common * target_to_cortex_a(struct target *target)
Definition: cortex_a.h:104
@ CORTEX_A_ISRMASK_OFF
Definition: cortex_a.h:45
@ CORTEX_A_ISRMASK_ON
Definition: cortex_a.h:46
@ CORTEX_A_DACRFIXUP_ON
Definition: cortex_a.h:51
@ CORTEX_A_DACRFIXUP_OFF
Definition: cortex_a.h:50
#define CORTEX_A_COMMON_MAGIC
Definition: cortex_a.h:22
uint64_t buffer
Pointer to data buffer to send over SPI.
Definition: dw-spi-helper.h:0
uint32_t size
Size of dw_spi_transaction::buffer.
Definition: dw-spi-helper.h:4
uint32_t address
Starting address. Sector aligned.
Definition: dw-spi-helper.h:0
int mask
Definition: esirisc.c:1740
uint8_t type
Definition: esp_usb_jtag.c:0
static struct esp_usb_jtag * priv
Definition: esp_usb_jtag.c:219
bool transport_is_jtag(void)
Returns true if the current debug session is using JTAG as its transport.
Definition: jtag/core.c:1840
int adapter_deassert_reset(void)
Definition: jtag/core.c:1912
enum reset_types jtag_get_reset_config(void)
Definition: jtag/core.c:1747
int adapter_assert_reset(void)
Definition: jtag/core.c:1892
@ RESET_SRST_NO_GATING
Definition: jtag.h:224
@ RESET_HAS_SRST
Definition: jtag.h:218
#define LOG_WARNING(expr ...)
Definition: log.h:130
#define ERROR_FAIL
Definition: log.h:174
#define LOG_TARGET_ERROR(target, fmt_str,...)
Definition: log.h:162
#define LOG_TARGET_DEBUG(target, fmt_str,...)
Definition: log.h:150
#define LOG_ERROR(expr ...)
Definition: log.h:133
#define LOG_INFO(expr ...)
Definition: log.h:127
#define LOG_DEBUG(expr ...)
Definition: log.h:110
#define ERROR_OK
Definition: log.h:168
const struct nvp * nvp_name2value(const struct nvp *p, const char *name)
Definition: nvp.c:29
const struct nvp * nvp_value2name(const struct nvp *p, int value)
Definition: nvp.c:39
void register_cache_invalidate(struct reg_cache *cache)
Marks the contents of the register cache as invalid (and clean).
Definition: register.c:94
target_addr_t addr
Start address to search for the control block.
Definition: rtt/rtt.c:28
struct target * target
Definition: rtt/rtt.c:26
const struct command_registration smp_command_handlers[]
Definition: smp.c:153
#define foreach_smp_target(pos, head)
Definition: smp.h:15
#define BIT(nr)
Definition: stm32l4x.h:18
uint64_t ap_num
ADIv5: Number of this AP (0~255) ADIv6: Base address of this AP (4k aligned) TODO: to be more coheren...
Definition: arm_adi_v5.h:261
struct adiv5_dap * dap
DAP this AP belongs to.
Definition: arm_adi_v5.h:254
uint32_t memaccess_tck
Configures how many extra tck clocks are added after starting a MEM-AP access before we try to read i...
Definition: arm_adi_v5.h:306
This represents an ARM Debug Interface (v5) Debug Access Port (DAP).
Definition: arm_adi_v5.h:348
uint64_t apsel
Definition: arm_adi_v5.h:367
struct adiv5_dap * dap
Definition: arm_adi_v5.h:787
This wraps an implementation of DPM primitives.
Definition: arm_dpm.h:47
int(* instr_read_data_dcc)(struct arm_dpm *dpm, uint32_t opcode, uint32_t *data)
Runs one instruction, reading data from dcc after execution.
Definition: arm_dpm.h:91
uint64_t didr
Cache of DIDR.
Definition: arm_dpm.h:51
int(* instr_write_data_r0)(struct arm_dpm *dpm, uint32_t opcode, uint32_t data)
Runs one instruction, writing data to R0 before execution.
Definition: arm_dpm.h:72
struct arm * arm
Definition: arm_dpm.h:48
int(* bpwp_enable)(struct arm_dpm *dpm, unsigned int index_value, uint32_t addr, uint32_t control)
Enables one breakpoint or watchpoint by writing to the hardware registers.
Definition: arm_dpm.h:122
int(* finish)(struct arm_dpm *dpm)
Invoke after a series of instruction operations.
Definition: arm_dpm.h:57
struct dpm_bp * dbp
Definition: arm_dpm.h:139
int(* instr_write_data_dcc)(struct arm_dpm *dpm, uint32_t opcode, uint32_t data)
Runs one instruction, writing data to DCC before execution.
Definition: arm_dpm.h:65
int(* prepare)(struct arm_dpm *dpm)
Invoke before a series of instruction operations.
Definition: arm_dpm.h:54
int(* instr_read_data_r0)(struct arm_dpm *dpm, uint32_t opcode, uint32_t *data)
Runs one instruction, reading data from r0 after execution.
Definition: arm_dpm.h:98
int(* instr_read_data_r0_r1)(struct arm_dpm *dpm, uint32_t opcode, uint64_t *data)
Runs two instructions, reading data from r0 and r1 after execution.
Definition: arm_dpm.h:105
struct dpm_wp * dwp
Definition: arm_dpm.h:140
int(* bpwp_disable)(struct arm_dpm *dpm, unsigned int index_value)
Disables one breakpoint or watchpoint by clearing its hardware control registers.
Definition: arm_dpm.h:130
int(* instr_cpsr_sync)(struct arm_dpm *dpm)
Optional core-specific operation invoked after CPSR writes.
Definition: arm_dpm.h:86
int(* instr_write_data_r0_r1)(struct arm_dpm *dpm, uint32_t opcode, uint64_t data)
Runs two instructions, writing data to R0 and R1 before execution.
Definition: arm_dpm.h:78
uint32_t dscr
Recent value of DSCR.
Definition: arm_dpm.h:150
Represents a generic ARM core, with standard application registers.
Definition: arm.h:175
enum arm_core_type core_type
Indicates what registers are in the ARM state core register set.
Definition: arm.h:193
int(* mrc)(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t crn, uint32_t crm, uint32_t *value)
Read coprocessor register.
Definition: arm.h:230
enum arm_mode core_mode
Record the current core mode: SVC, USR, or some other mode.
Definition: arm.h:196
struct adiv5_dap * dap
For targets conforming to ARM Debug Interface v5, this handle references the Debug Access Port (DAP) ...
Definition: arm.h:257
struct reg * pc
Handle to the PC; valid in all core modes.
Definition: arm.h:181
struct reg_cache * core_cache
Definition: arm.h:178
int(* mcr)(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t crn, uint32_t crm, uint32_t value)
Write coprocessor register.
Definition: arm.h:241
struct reg * spsr
Handle to the SPSR; valid only in core modes with an SPSR.
Definition: arm.h:187
int arm_vfp_version
Floating point or VFP version, 0 if disabled.
Definition: arm.h:205
struct target * target
Backpointer to the target.
Definition: arm.h:210
enum arm_state core_state
Record the current core state: ARM, Thumb, or otherwise.
Definition: arm.h:199
int d_u_cache_enabled
Definition: armv7a.h:67
bool is_armv7r
Definition: armv7a.h:103
int(* post_debug_entry)(struct target *target)
Definition: armv7a.h:114
int(* examine_debug_reason)(struct target *target)
Definition: armv7a.h:113
target_addr_t debug_base
Definition: armv7a.h:95
struct arm arm
Definition: armv7a.h:90
struct armv7a_mmu_common armv7a_mmu
Definition: armv7a.h:111
struct arm_dpm dpm
Definition: armv7a.h:94
struct adiv5_ap * debug_ap
Definition: armv7a.h:96
void(* pre_restore_context)(struct target *target)
Definition: armv7a.h:116
struct armv7a_cache_common armv7a_cache
Definition: armv7a.h:83
int(* read_physical_memory)(struct target *target, target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
Definition: armv7a.h:81
uint32_t mmu_enabled
Definition: armv7a.h:84
int linked_brp
Definition: breakpoints.h:36
unsigned int length
Definition: breakpoints.h:29
uint8_t * orig_instr
Definition: breakpoints.h:33
enum breakpoint_type type
Definition: breakpoints.h:30
bool is_set
Definition: breakpoints.h:31
unsigned int number
Definition: breakpoints.h:32
uint32_t asid
Definition: breakpoints.h:28
target_addr_t address
Definition: breakpoints.h:27
const char * name
Definition: command.h:235
const struct command_registration * chain
If non-NULL, the commands in chain will be registered in the same context and scope of this registrat...
Definition: command.h:249
uint32_t value
Definition: cortex_a.h:57
uint32_t control
Definition: cortex_a.h:58
bool used
Definition: cortex_a.h:55
uint8_t brpn
Definition: cortex_a.h:59
struct armv7a_common armv7a_common
Definition: cortex_a.h:72
struct cortex_a_wrp * wrp_list
Definition: cortex_a.h:94
uint32_t didr
Definition: cortex_a.h:97
int brp_num_context
Definition: cortex_a.h:88
struct cortex_a_brp * brp_list
Definition: cortex_a.h:91
uint32_t cp15_control_reg_curr
Definition: cortex_a.h:80
enum cortex_a_dacrfixup_mode dacrfixup_mode
Definition: cortex_a.h:100
int wrp_num_available
Definition: cortex_a.h:93
uint32_t cpudbg_dscr
Definition: cortex_a.h:75
uint32_t cp15_dacr_reg
Definition: cortex_a.h:84
unsigned int common_magic
Definition: cortex_a.h:70
enum cortex_a_isrmasking_mode isrmasking_mode
Definition: cortex_a.h:99
uint32_t cpuid
Definition: cortex_a.h:96
enum arm_mode curr_mode
Definition: cortex_a.h:85
uint32_t cp15_control_reg
Definition: cortex_a.h:78
int brp_num_available
Definition: cortex_a.h:90
uint8_t wrpn
Definition: cortex_a.h:66
bool used
Definition: cortex_a.h:63
uint32_t value
Definition: cortex_a.h:64
uint32_t control
Definition: cortex_a.h:65
int32_t core[2]
Definition: target.h:100
struct target * target
Definition: target.h:95
Name Value Pairs, aka: NVP.
Definition: nvp.h:61
int value
Definition: nvp.h:63
const char * name
Definition: nvp.h:62
Definition: register.h:111
bool valid
Definition: register.h:126
uint8_t * value
Definition: register.h:122
bool dirty
Definition: register.h:124
struct target * target
Definition: target.h:214
This holds methods shared between all instances of a given target type.
Definition: target_type.h:26
const char * name
Name of this type of target.
Definition: target_type.h:31
Definition: target.h:116
int32_t coreid
Definition: target.h:120
struct gdb_service * gdb_service
Definition: target.h:199
bool dbgbase_set
Definition: target.h:174
bool dbg_msg_enabled
Definition: target.h:163
enum target_debug_reason debug_reason
Definition: target.h:154
enum target_state state
Definition: target.h:157
uint32_t dbgbase
Definition: target.h:175
void * private_config
Definition: target.h:165
struct list_head * smp_targets
Definition: target.h:188
unsigned int smp
Definition: target.h:187
bool reset_halt
Definition: target.h:144
char * cmd_name
Definition: target.h:118
bool is_set
Definition: breakpoints.h:47
unsigned int length
Definition: breakpoints.h:43
unsigned int number
Definition: breakpoints.h:48
target_addr_t address
Definition: breakpoints.h:42
int target_call_event_callbacks(struct target *target, enum target_event event)
Definition: target.c:1765
void target_free_all_working_areas(struct target *target)
Definition: target.c:2151
void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
Definition: target.c:370
void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
Definition: target.c:352
int target_write_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
Write count items of size bytes to the memory of target at the address given.
Definition: target.c:1266
int target_register_timer_callback(int(*callback)(void *priv), unsigned int time_ms, enum target_timer_type type, void *priv)
The period is very approximate, the callback can happen much more often or much more rarely than spec...
Definition: target.c:1659
uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
Definition: target.c:334
int target_read_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
Read count items of size bytes from the memory of target at the address given.
Definition: target.c:1238
bool target_has_event_action(const struct target *target, enum target_event event)
Returns true only if the target has a handler for the specified event.
Definition: target.c:4867
struct target * get_current_target(struct command_context *cmd_ctx)
Definition: target.c:458
void target_handle_event(struct target *target, enum target_event e)
Definition: target.c:4674
uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
Definition: target.c:316
@ DBG_REASON_NOTHALTED
Definition: target.h:74
@ DBG_REASON_DBGRQ
Definition: target.h:69
@ DBG_REASON_SINGLESTEP
Definition: target.h:73
@ DBG_REASON_WATCHPOINT
Definition: target.h:71
@ DBG_REASON_BREAKPOINT
Definition: target.h:70
#define ERROR_TARGET_NOT_HALTED
Definition: target.h:790
#define ERROR_TARGET_INIT_FAILED
Definition: target.h:788
static bool target_was_examined(const struct target *target)
Definition: target.h:436
#define ERROR_TARGET_UNALIGNED_ACCESS
Definition: target.h:792
#define ERROR_TARGET_INVALID
Definition: target.h:787
@ TARGET_TIMER_TYPE_PERIODIC
Definition: target.h:327
@ TARGET_EVENT_DEBUG_RESUMED
Definition: target.h:272
@ TARGET_EVENT_HALTED
Definition: target.h:252
@ TARGET_EVENT_RESUMED
Definition: target.h:253
@ TARGET_EVENT_DEBUG_HALTED
Definition: target.h:271
@ TARGET_EVENT_RESET_ASSERT
Definition: target.h:264
static const char * target_name(const struct target *target)
Returns the instance-specific name of the specified target.
Definition: target.h:233
target_state
Definition: target.h:53
@ TARGET_RESET
Definition: target.h:57
@ TARGET_DEBUG_RUNNING
Definition: target.h:58
@ TARGET_UNKNOWN
Definition: target.h:54
@ TARGET_HALTED
Definition: target.h:56
@ TARGET_RUNNING
Definition: target.h:55
#define ERROR_TARGET_RESOURCE_NOT_AVAILABLE
Definition: target.h:794
static void target_set_examined(struct target *target)
Sets the examined flag for the given target.
Definition: target.h:443
#define ERROR_TARGET_DATA_ABORT
Definition: target.h:793
#define ERROR_TARGET_TRANSLATION_FAULT
Definition: target.h:795
int target_request(struct target *target, uint32_t request)
int64_t timeval_ms(void)
#define TARGET_ADDR_FMT
Definition: types.h:342
uint64_t target_addr_t
Definition: types.h:335
#define container_of(ptr, type, member)
Cast a member of a structure out to the containing structure.
Definition: types.h:68
#define NULL
Definition: usb.h:16
uint8_t status[4]
Definition: vdebug.c:17
uint8_t dummy[96]
Definition: vdebug.c:23
uint8_t count[4]
Definition: vdebug.c:22