OpenOCD
aarch64.c
Go to the documentation of this file.
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 
3 /***************************************************************************
4  * Copyright (C) 2015 by David Ung *
5  * *
6  ***************************************************************************/
7 
8 #ifdef HAVE_CONFIG_H
9 #include "config.h"
10 #endif
11 
12 #include "breakpoints.h"
13 #include "aarch64.h"
14 #include "a64_disassembler.h"
15 #include "register.h"
16 #include "target_request.h"
17 #include "target_type.h"
18 #include "armv8_opcodes.h"
19 #include "armv8_cache.h"
20 #include "arm_coresight.h"
21 #include "arm_semihosting.h"
22 #include "jtag/interface.h"
23 #include "smp.h"
24 #include <helper/nvp.h>
25 #include <helper/time_support.h>
26 
30 };
31 
32 enum halt_mode {
35 };
36 
39  struct arm_cti *cti;
40 };
41 
42 static int aarch64_poll(struct target *target);
43 static int aarch64_debug_entry(struct target *target);
44 static int aarch64_restore_context(struct target *target, bool bpwp);
45 static int aarch64_set_breakpoint(struct target *target,
46  struct breakpoint *breakpoint, uint8_t matchmode);
48  struct breakpoint *breakpoint, uint8_t matchmode);
50  struct breakpoint *breakpoint);
51 static int aarch64_unset_breakpoint(struct target *target,
52  struct breakpoint *breakpoint);
53 static int aarch64_mmu(struct target *target, int *enabled);
54 static int aarch64_virt2phys(struct target *target,
55  target_addr_t virt, target_addr_t *phys);
56 static int aarch64_read_cpu_memory(struct target *target,
57  uint64_t address, uint32_t size, uint32_t count, uint8_t *buffer);
58 
60 {
61  enum arm_mode target_mode = ARM_MODE_ANY;
62  int retval = ERROR_OK;
63  uint32_t instr;
64 
65  struct aarch64_common *aarch64 = target_to_aarch64(target);
66  struct armv8_common *armv8 = target_to_armv8(target);
67 
68  if (aarch64->system_control_reg != aarch64->system_control_reg_curr) {
69  aarch64->system_control_reg_curr = aarch64->system_control_reg;
70  /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_v8->cp15_control_reg); */
71 
72  switch (armv8->arm.core_mode) {
73  case ARMV8_64_EL0T:
74  target_mode = ARMV8_64_EL1H;
75  /* fall through */
76  case ARMV8_64_EL1T:
77  case ARMV8_64_EL1H:
78  instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL1, 0);
79  break;
80  case ARMV8_64_EL2T:
81  case ARMV8_64_EL2H:
82  instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL2, 0);
83  break;
84  case ARMV8_64_EL3H:
85  case ARMV8_64_EL3T:
86  instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL3, 0);
87  break;
88 
89  case ARM_MODE_SVC:
90  case ARM_MODE_ABT:
91  case ARM_MODE_FIQ:
92  case ARM_MODE_IRQ:
93  case ARM_MODE_HYP:
94  case ARM_MODE_UND:
95  case ARM_MODE_SYS:
96  case ARM_MODE_MON:
97  instr = ARMV4_5_MCR(15, 0, 0, 1, 0, 0);
98  break;
99 
100  default:
101  LOG_ERROR("cannot read system control register in this mode: (%s : 0x%x)",
102  armv8_mode_name(armv8->arm.core_mode), armv8->arm.core_mode);
103  return ERROR_FAIL;
104  }
105 
106  if (target_mode != ARM_MODE_ANY)
107  armv8_dpm_modeswitch(&armv8->dpm, target_mode);
108 
109  retval = armv8->dpm.instr_write_data_r0_64(&armv8->dpm, instr, aarch64->system_control_reg);
110  if (retval != ERROR_OK)
111  return retval;
112 
113  if (target_mode != ARM_MODE_ANY)
115  }
116 
117  return retval;
118 }
119 
120 /* modify system_control_reg in order to enable or disable mmu for :
121  * - virt2phys address conversion
122  * - read or write memory in phys or virt address */
123 static int aarch64_mmu_modify(struct target *target, int enable)
124 {
125  struct aarch64_common *aarch64 = target_to_aarch64(target);
126  struct armv8_common *armv8 = &aarch64->armv8_common;
127  int retval = ERROR_OK;
128  enum arm_mode target_mode = ARM_MODE_ANY;
129  uint32_t instr = 0;
130 
131  if (enable) {
132  /* if mmu enabled at target stop and mmu not enable */
133  if (!(aarch64->system_control_reg & 0x1U)) {
134  LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
135  return ERROR_FAIL;
136  }
137  if (!(aarch64->system_control_reg_curr & 0x1U))
138  aarch64->system_control_reg_curr |= 0x1U;
139  } else {
140  if (aarch64->system_control_reg_curr & 0x4U) {
141  /* data cache is active */
142  aarch64->system_control_reg_curr &= ~0x4U;
143  /* flush data cache armv8 function to be called */
146  }
147  if ((aarch64->system_control_reg_curr & 0x1U)) {
148  aarch64->system_control_reg_curr &= ~0x1U;
149  }
150  }
151 
152  switch (armv8->arm.core_mode) {
153  case ARMV8_64_EL0T:
154  target_mode = ARMV8_64_EL1H;
155  /* fall through */
156  case ARMV8_64_EL1T:
157  case ARMV8_64_EL1H:
158  instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL1, 0);
159  break;
160  case ARMV8_64_EL2T:
161  case ARMV8_64_EL2H:
162  instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL2, 0);
163  break;
164  case ARMV8_64_EL3H:
165  case ARMV8_64_EL3T:
166  instr = ARMV8_MSR_GP(SYSTEM_SCTLR_EL3, 0);
167  break;
168 
169  case ARM_MODE_SVC:
170  case ARM_MODE_ABT:
171  case ARM_MODE_FIQ:
172  case ARM_MODE_IRQ:
173  case ARM_MODE_HYP:
174  case ARM_MODE_UND:
175  case ARM_MODE_SYS:
176  case ARM_MODE_MON:
177  instr = ARMV4_5_MCR(15, 0, 0, 1, 0, 0);
178  break;
179 
180  default:
181  LOG_DEBUG("unknown cpu state 0x%x", armv8->arm.core_mode);
182  break;
183  }
184  if (target_mode != ARM_MODE_ANY)
185  armv8_dpm_modeswitch(&armv8->dpm, target_mode);
186 
187  retval = armv8->dpm.instr_write_data_r0_64(&armv8->dpm, instr,
188  aarch64->system_control_reg_curr);
189 
190  if (target_mode != ARM_MODE_ANY)
192 
193  return retval;
194 }
195 
196 static int aarch64_read_prsr(struct target *target, uint32_t *prsr)
197 {
198  struct armv8_common *armv8 = target_to_armv8(target);
199  int retval;
200 
201  retval = mem_ap_read_atomic_u32(armv8->debug_ap,
202  armv8->debug_base + CPUV8_DBG_PRSR, prsr);
203  if (retval != ERROR_OK)
204  return retval;
205 
206  armv8->sticky_reset |= *prsr & PRSR_SR;
207  return ERROR_OK;
208 }
209 
210 /*
211  * Basic debug access, very low level assumes state is saved
212  */
214 {
215  struct armv8_common *armv8 = target_to_armv8(target);
216  int retval;
217  uint32_t dummy;
218 
219  LOG_DEBUG("%s", target_name(target));
220 
221  retval = mem_ap_write_atomic_u32(armv8->debug_ap,
222  armv8->debug_base + CPUV8_DBG_OSLAR, 0);
223  if (retval != ERROR_OK) {
224  LOG_DEBUG("Examine %s failed", "oslock");
225  return retval;
226  }
227 
228  /* Clear Sticky Power Down status Bit in PRSR to enable access to
229  the registers in the Core Power Domain */
230  retval = aarch64_read_prsr(target, &dummy);
231  if (retval != ERROR_OK)
232  return retval;
233 
234  /*
235  * Static CTI configuration:
236  * Channel 0 -> trigger outputs HALT request to PE
237  * Channel 1 -> trigger outputs Resume request to PE
238  * Gate all channel trigger events from entering the CTM
239  */
240 
241  /* Enable CTI */
242  retval = arm_cti_enable(armv8->cti, true);
243  /* By default, gate all channel events to and from the CTM */
244  if (retval == ERROR_OK)
245  retval = arm_cti_write_reg(armv8->cti, CTI_GATE, 0);
246  /* output halt requests to PE on channel 0 event */
247  if (retval == ERROR_OK)
248  retval = arm_cti_write_reg(armv8->cti, CTI_OUTEN0, CTI_CHNL(0));
249  /* output restart requests to PE on channel 1 event */
250  if (retval == ERROR_OK)
251  retval = arm_cti_write_reg(armv8->cti, CTI_OUTEN1, CTI_CHNL(1));
252  if (retval != ERROR_OK)
253  return retval;
254 
255  /* Resync breakpoint registers */
256 
257  return ERROR_OK;
258 }
259 
260 /* Write to memory mapped registers directly with no cache or mmu handling */
263  uint32_t value)
264 {
265  int retval;
266  struct armv8_common *armv8 = target_to_armv8(target);
267 
268  retval = mem_ap_write_atomic_u32(armv8->debug_ap, address, value);
269 
270  return retval;
271 }
272 
273 static int aarch64_dpm_setup(struct aarch64_common *a8, uint64_t debug)
274 {
275  struct arm_dpm *dpm = &a8->armv8_common.dpm;
276  int retval;
277 
278  dpm->arm = &a8->armv8_common.arm;
279  dpm->didr = debug;
280 
281  retval = armv8_dpm_setup(dpm);
282  if (retval == ERROR_OK)
283  retval = armv8_dpm_initialize(dpm);
284 
285  return retval;
286 }
287 
288 static int aarch64_set_dscr_bits(struct target *target, unsigned long bit_mask, unsigned long value)
289 {
290  struct armv8_common *armv8 = target_to_armv8(target);
291  return armv8_set_dbgreg_bits(armv8, CPUV8_DBG_DSCR, bit_mask, value);
292 }
293 
295  uint32_t mask, uint32_t val, int *p_result, uint32_t *p_prsr)
296 {
297  uint32_t prsr;
298  int retval;
299 
300  retval = aarch64_read_prsr(target, &prsr);
301  if (retval != ERROR_OK)
302  return retval;
303 
304  if (p_prsr)
305  *p_prsr = prsr;
306 
307  if (p_result)
308  *p_result = (prsr & mask) == (val & mask);
309 
310  return ERROR_OK;
311 }
312 
314 {
315  int retval = ERROR_OK;
316  uint32_t prsr;
317 
318  int64_t then = timeval_ms();
319  for (;;) {
320  int halted;
321 
323  if (retval != ERROR_OK || halted)
324  break;
325 
326  if (timeval_ms() > then + 1000) {
327  retval = ERROR_TARGET_TIMEOUT;
328  LOG_DEBUG("target %s timeout, prsr=0x%08"PRIx32, target_name(target), prsr);
329  break;
330  }
331  }
332  return retval;
333 }
334 
335 static int aarch64_prepare_halt_smp(struct target *target, bool exc_target, struct target **p_first)
336 {
337  int retval = ERROR_OK;
338  struct target_list *head;
339  struct target *first = NULL;
340 
341  LOG_DEBUG("target %s exc %i", target_name(target), exc_target);
342 
344  struct target *curr = head->target;
345  struct armv8_common *armv8 = target_to_armv8(curr);
346 
347  if (exc_target && curr == target)
348  continue;
349  if (!target_was_examined(curr))
350  continue;
351  if (curr->state != TARGET_RUNNING)
352  continue;
353 
354  /* HACK: mark this target as prepared for halting */
356 
357  /* open the gate for channel 0 to let HALT requests pass to the CTM */
358  retval = arm_cti_ungate_channel(armv8->cti, 0);
359  if (retval == ERROR_OK)
360  retval = aarch64_set_dscr_bits(curr, DSCR_HDE, DSCR_HDE);
361  if (retval != ERROR_OK)
362  break;
363 
364  LOG_DEBUG("target %s prepared", target_name(curr));
365 
366  if (!first)
367  first = curr;
368  }
369 
370  if (p_first) {
371  if (exc_target && first)
372  *p_first = first;
373  else
374  *p_first = target;
375  }
376 
377  return retval;
378 }
379 
380 static int aarch64_halt_one(struct target *target, enum halt_mode mode)
381 {
382  int retval = ERROR_OK;
383  struct armv8_common *armv8 = target_to_armv8(target);
384 
385  LOG_DEBUG("%s", target_name(target));
386 
387  /* allow Halting Debug Mode */
389  if (retval != ERROR_OK)
390  return retval;
391 
392  /* trigger an event on channel 0, this outputs a halt request to the PE */
393  retval = arm_cti_pulse_channel(armv8->cti, 0);
394  if (retval != ERROR_OK)
395  return retval;
396 
397  if (mode == HALT_SYNC) {
398  retval = aarch64_wait_halt_one(target);
399  if (retval != ERROR_OK) {
400  if (retval == ERROR_TARGET_TIMEOUT)
401  LOG_ERROR("Timeout waiting for target %s halt", target_name(target));
402  return retval;
403  }
404  }
405 
406  return ERROR_OK;
407 }
408 
409 static int aarch64_halt_smp(struct target *target, bool exc_target)
410 {
411  struct target *next = target;
412  int retval;
413 
414  /* prepare halt on all PEs of the group */
415  retval = aarch64_prepare_halt_smp(target, exc_target, &next);
416 
417  if (exc_target && next == target)
418  return retval;
419 
420  /* halt the target PE */
421  if (retval == ERROR_OK)
422  retval = aarch64_halt_one(next, HALT_LAZY);
423 
424  if (retval != ERROR_OK)
425  return retval;
426 
427  /* wait for all PEs to halt */
428  int64_t then = timeval_ms();
429  for (;;) {
430  bool all_halted = true;
431  struct target_list *head;
432  struct target *curr;
433 
435  int halted;
436 
437  curr = head->target;
438 
439  if (!target_was_examined(curr))
440  continue;
441 
443  if (retval != ERROR_OK || !halted) {
444  all_halted = false;
445  break;
446  }
447  }
448 
449  if (all_halted)
450  break;
451 
452  if (timeval_ms() > then + 1000) {
453  retval = ERROR_TARGET_TIMEOUT;
454  break;
455  }
456 
457  /*
458  * HACK: on Hi6220 there are 8 cores organized in 2 clusters
459  * and it looks like the CTI's are not connected by a common
460  * trigger matrix. It seems that we need to halt one core in each
461  * cluster explicitly. So if we find that a core has not halted
462  * yet, we trigger an explicit halt for the second cluster.
463  */
464  retval = aarch64_halt_one(curr, HALT_LAZY);
465  if (retval != ERROR_OK)
466  break;
467  }
468 
469  return retval;
470 }
471 
473 {
474  struct target *gdb_target = NULL;
475  struct target_list *head;
476  struct target *curr;
477 
479  LOG_DEBUG("Halting remaining targets in SMP group");
480  aarch64_halt_smp(target, true);
481  }
482 
483  /* poll all targets in the group, but skip the target that serves GDB */
485  curr = head->target;
486  /* skip calling context */
487  if (curr == target)
488  continue;
489  if (!target_was_examined(curr))
490  continue;
491  /* skip targets that were already halted */
492  if (curr->state == TARGET_HALTED)
493  continue;
494  /* remember the gdb_service->target */
495  if (curr->gdb_service)
496  gdb_target = curr->gdb_service->target;
497  /* skip it */
498  if (curr == gdb_target)
499  continue;
500 
501  /* avoid recursion in aarch64_poll() */
502  curr->smp = 0;
503  aarch64_poll(curr);
504  curr->smp = 1;
505  }
506 
507  /* after all targets were updated, poll the gdb serving target */
508  if (gdb_target && gdb_target != target)
509  aarch64_poll(gdb_target);
510 
511  return ERROR_OK;
512 }
513 
514 /*
515  * Aarch64 Run control
516  */
517 
518 static int aarch64_poll(struct target *target)
519 {
520  struct armv8_common *armv8 = target_to_armv8(target);
521  enum target_state prev_target_state;
522  int retval = ERROR_OK;
523  uint32_t prsr;
524 
525  retval = aarch64_read_prsr(target, &prsr);
526  if (retval != ERROR_OK)
527  return retval;
528 
529  if (armv8->sticky_reset) {
530  armv8->sticky_reset = false;
531  if (target->state != TARGET_RESET) {
533  LOG_TARGET_INFO(target, "external reset detected");
534  if (armv8->arm.core_cache) {
537  }
538  }
539  }
540 
541  if (prsr & PRSR_HALT) {
542  prev_target_state = target->state;
543  if (prev_target_state != TARGET_HALTED) {
544  enum target_debug_reason debug_reason = target->debug_reason;
545 
546  /* We have a halting debug event */
548  LOG_DEBUG("Target %s halted", target_name(target));
549  retval = aarch64_debug_entry(target);
550  if (retval != ERROR_OK)
551  return retval;
552 
553  if (target->smp)
554  update_halt_gdb(target, debug_reason);
555 
556  if (arm_semihosting(target, &retval) != 0)
557  return retval;
558 
559  switch (prev_target_state) {
560  case TARGET_RUNNING:
561  case TARGET_UNKNOWN:
562  case TARGET_RESET:
564  break;
567  break;
568  default:
569  break;
570  }
571  }
572  } else if (prsr & PRSR_RESET) {
574  } else {
576  }
577 
578  return retval;
579 }
580 
581 static int aarch64_halt(struct target *target)
582 {
583  struct armv8_common *armv8 = target_to_armv8(target);
585 
586  if (target->smp)
587  return aarch64_halt_smp(target, false);
588 
590 }
591 
592 static int aarch64_restore_one(struct target *target, bool current,
593  uint64_t *address, bool handle_breakpoints, bool debug_execution)
594 {
595  struct armv8_common *armv8 = target_to_armv8(target);
596  struct arm *arm = &armv8->arm;
597  int retval;
598  uint64_t resume_pc;
599 
600  LOG_DEBUG("%s", target_name(target));
601 
602  if (!debug_execution)
604 
605  /* current = true: continue on current pc, otherwise continue at <address> */
606  resume_pc = buf_get_u64(arm->pc->value, 0, 64);
607  if (!current)
608  resume_pc = *address;
609  else
610  *address = resume_pc;
611 
612  /* Make sure that the Armv7 gdb thumb fixups does not
613  * kill the return address
614  */
615  switch (arm->core_state) {
616  case ARM_STATE_ARM:
617  resume_pc &= 0xFFFFFFFC;
618  break;
619  case ARM_STATE_AARCH64:
620  resume_pc &= 0xFFFFFFFFFFFFFFFCULL;
621  break;
622  case ARM_STATE_THUMB:
623  case ARM_STATE_THUMB_EE:
624  /* When the return address is loaded into PC
625  * bit 0 must be 1 to stay in Thumb state
626  */
627  resume_pc |= 0x1;
628  break;
629  case ARM_STATE_JAZELLE:
630  LOG_ERROR("How do I resume into Jazelle state??");
631  return ERROR_FAIL;
632  }
633  LOG_DEBUG("resume pc = 0x%016" PRIx64, resume_pc);
634  buf_set_u64(arm->pc->value, 0, 64, resume_pc);
635  arm->pc->dirty = true;
636  arm->pc->valid = true;
637 
638  /* called it now before restoring context because it uses cpu
639  * register r0 for restoring system control register */
641  if (retval == ERROR_OK)
642  retval = aarch64_restore_context(target, handle_breakpoints);
643 
644  return retval;
645 }
646 
653 {
654  struct armv8_common *armv8 = target_to_armv8(target);
655  int retval;
656  uint32_t dscr;
657  uint32_t tmp;
658 
659  LOG_DEBUG("%s", target_name(target));
660 
661  retval = mem_ap_read_atomic_u32(armv8->debug_ap,
662  armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
663  if (retval != ERROR_OK)
664  return retval;
665 
666  if ((dscr & DSCR_ITE) == 0)
667  LOG_ERROR("DSCR.ITE must be set before leaving debug!");
668  if ((dscr & DSCR_ERR) != 0)
669  LOG_ERROR("DSCR.ERR must be cleared before leaving debug!");
670 
671  /* acknowledge a pending CTI halt event */
672  retval = arm_cti_ack_events(armv8->cti, CTI_TRIG(HALT));
673  /*
674  * open the CTI gate for channel 1 so that the restart events
675  * get passed along to all PEs. Also close gate for channel 0
676  * to isolate the PE from halt events.
677  */
678  if (retval == ERROR_OK)
679  retval = arm_cti_ungate_channel(armv8->cti, 1);
680  if (retval == ERROR_OK)
681  retval = arm_cti_gate_channel(armv8->cti, 0);
682 
683  /* make sure that DSCR.HDE is set */
684  if (retval == ERROR_OK) {
685  dscr |= DSCR_HDE;
686  retval = mem_ap_write_atomic_u32(armv8->debug_ap,
687  armv8->debug_base + CPUV8_DBG_DSCR, dscr);
688  }
689 
690  if (retval == ERROR_OK) {
691  /* clear sticky bits in PRSR, SDR is now 0 */
692  retval = aarch64_read_prsr(target, &tmp);
693  }
694 
695  return retval;
696 }
697 
699 {
700  struct armv8_common *armv8 = target_to_armv8(target);
701  int retval;
702 
703  LOG_DEBUG("%s", target_name(target));
704 
705  /* trigger an event on channel 1, generates a restart request to the PE */
706  retval = arm_cti_pulse_channel(armv8->cti, 1);
707  if (retval != ERROR_OK)
708  return retval;
709 
710  if (mode == RESTART_SYNC) {
711  int64_t then = timeval_ms();
712  for (;;) {
713  int resumed;
714  /*
715  * if PRSR.SDR is set now, the target did restart, even
716  * if it's now already halted again (e.g. due to breakpoint)
717  */
719  PRSR_SDR, PRSR_SDR, &resumed, NULL);
720  if (retval != ERROR_OK || resumed)
721  break;
722 
723  if (timeval_ms() > then + 1000) {
724  LOG_ERROR("%s: Timeout waiting for resume"PRIx32, target_name(target));
725  retval = ERROR_TARGET_TIMEOUT;
726  break;
727  }
728  }
729  }
730 
731  if (retval != ERROR_OK)
732  return retval;
733 
736 
737  return ERROR_OK;
738 }
739 
741 {
742  int retval;
743 
744  LOG_DEBUG("%s", target_name(target));
745 
747  if (retval == ERROR_OK)
749 
750  return retval;
751 }
752 
753 /*
754  * prepare all but the current target for restart
755  */
757  bool handle_breakpoints, struct target **p_first)
758 {
759  int retval = ERROR_OK;
760  struct target_list *head;
761  struct target *first = NULL;
762  uint64_t address;
763 
765  struct target *curr = head->target;
766 
767  /* skip calling target */
768  if (curr == target)
769  continue;
770  if (!target_was_examined(curr))
771  continue;
772  if (curr->state != TARGET_HALTED)
773  continue;
774 
775  /* resume at current address, not in step mode */
776  retval = aarch64_restore_one(curr, true, &address, handle_breakpoints,
777  false);
778  if (retval == ERROR_OK)
779  retval = aarch64_prepare_restart_one(curr);
780  if (retval != ERROR_OK) {
781  LOG_ERROR("failed to restore target %s", target_name(curr));
782  break;
783  }
784  /* remember the first valid target in the group */
785  if (!first)
786  first = curr;
787  }
788 
789  if (p_first)
790  *p_first = first;
791 
792  return retval;
793 }
794 
795 
797 {
798  int retval = ERROR_OK;
799  struct target_list *head;
800  struct target *first = NULL;
801 
802  LOG_DEBUG("%s", target_name(target));
803 
804  retval = aarch64_prep_restart_smp(target, false, &first);
805  if (retval != ERROR_OK)
806  return retval;
807 
808  if (first)
809  retval = aarch64_do_restart_one(first, RESTART_LAZY);
810  if (retval != ERROR_OK) {
811  LOG_DEBUG("error restarting target %s", target_name(first));
812  return retval;
813  }
814 
815  int64_t then = timeval_ms();
816  for (;;) {
817  struct target *curr = target;
818  bool all_resumed = true;
819 
821  uint32_t prsr;
822  int resumed;
823 
824  curr = head->target;
825 
826  if (curr == target)
827  continue;
828 
829  if (!target_was_examined(curr))
830  continue;
831 
832  retval = aarch64_check_state_one(curr,
833  PRSR_SDR, PRSR_SDR, &resumed, &prsr);
834  if (retval != ERROR_OK || (!resumed && (prsr & PRSR_HALT))) {
835  all_resumed = false;
836  break;
837  }
838 
839  if (curr->state != TARGET_RUNNING) {
840  curr->state = TARGET_RUNNING;
843  }
844  }
845 
846  if (all_resumed)
847  break;
848 
849  if (timeval_ms() > then + 1000) {
850  LOG_ERROR("%s: timeout waiting for target resume", __func__);
851  retval = ERROR_TARGET_TIMEOUT;
852  break;
853  }
854  /*
855  * HACK: on Hi6220 there are 8 cores organized in 2 clusters
856  * and it looks like the CTI's are not connected by a common
857  * trigger matrix. It seems that we need to halt one core in each
858  * cluster explicitly. So if we find that a core has not halted
859  * yet, we trigger an explicit resume for the second cluster.
860  */
861  retval = aarch64_do_restart_one(curr, RESTART_LAZY);
862  if (retval != ERROR_OK)
863  break;
864 }
865 
866  return retval;
867 }
868 
869 static int aarch64_resume(struct target *target, bool current,
870  target_addr_t address, bool handle_breakpoints, bool debug_execution)
871 {
872  int retval = 0;
873  uint64_t addr = address;
874 
875  struct armv8_common *armv8 = target_to_armv8(target);
877 
878  if (target->state != TARGET_HALTED) {
879  LOG_TARGET_ERROR(target, "not halted");
881  }
882 
883  /*
884  * If this target is part of a SMP group, prepare the others
885  * targets for resuming. This involves restoring the complete
886  * target register context and setting up CTI gates to accept
887  * resume events from the trigger matrix.
888  */
889  if (target->smp) {
890  retval = aarch64_prep_restart_smp(target, handle_breakpoints, NULL);
891  if (retval != ERROR_OK)
892  return retval;
893  }
894 
895  /* all targets prepared, restore and restart the current target */
896  retval = aarch64_restore_one(target, current, &addr, handle_breakpoints,
897  debug_execution);
898  if (retval == ERROR_OK)
900  if (retval != ERROR_OK)
901  return retval;
902 
903  if (target->smp) {
904  int64_t then = timeval_ms();
905  for (;;) {
906  struct target *curr = target;
907  struct target_list *head;
908  bool all_resumed = true;
909 
911  uint32_t prsr;
912  int resumed;
913 
914  curr = head->target;
915  if (curr == target)
916  continue;
917  if (!target_was_examined(curr))
918  continue;
919 
920  retval = aarch64_check_state_one(curr,
921  PRSR_SDR, PRSR_SDR, &resumed, &prsr);
922  if (retval != ERROR_OK || (!resumed && (prsr & PRSR_HALT))) {
923  all_resumed = false;
924  break;
925  }
926 
927  if (curr->state != TARGET_RUNNING) {
928  curr->state = TARGET_RUNNING;
931  }
932  }
933 
934  if (all_resumed)
935  break;
936 
937  if (timeval_ms() > then + 1000) {
938  LOG_ERROR("%s: timeout waiting for target %s to resume", __func__, target_name(curr));
939  retval = ERROR_TARGET_TIMEOUT;
940  break;
941  }
942 
943  /*
944  * HACK: on Hi6220 there are 8 cores organized in 2 clusters
945  * and it looks like the CTI's are not connected by a common
946  * trigger matrix. It seems that we need to halt one core in each
947  * cluster explicitly. So if we find that a core has not halted
948  * yet, we trigger an explicit resume for the second cluster.
949  */
950  retval = aarch64_do_restart_one(curr, RESTART_LAZY);
951  if (retval != ERROR_OK)
952  break;
953  }
954  }
955 
956  if (retval != ERROR_OK)
957  return retval;
958 
960 
961  if (!debug_execution) {
964  LOG_DEBUG("target resumed at 0x%" PRIx64, addr);
965  } else {
968  LOG_DEBUG("target debug resumed at 0x%" PRIx64, addr);
969  }
970 
971  return ERROR_OK;
972 }
973 
974 static int aarch64_debug_entry(struct target *target)
975 {
976  int retval = ERROR_OK;
977  struct armv8_common *armv8 = target_to_armv8(target);
978  struct arm_dpm *dpm = &armv8->dpm;
979  enum arm_state core_state;
980  uint32_t dscr;
981 
982  /* make sure to clear all sticky errors */
983  retval = mem_ap_write_atomic_u32(armv8->debug_ap,
985  if (retval == ERROR_OK)
986  retval = mem_ap_read_atomic_u32(armv8->debug_ap,
987  armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
988  if (retval == ERROR_OK)
989  retval = arm_cti_ack_events(armv8->cti, CTI_TRIG(HALT));
990 
991  if (retval != ERROR_OK)
992  return retval;
993 
994  LOG_DEBUG("%s dscr = 0x%08" PRIx32, target_name(target), dscr);
995 
996  dpm->dscr = dscr;
997  core_state = armv8_dpm_get_core_state(dpm);
998  armv8_select_opcodes(armv8, core_state == ARM_STATE_AARCH64);
999  armv8_select_reg_access(armv8, core_state == ARM_STATE_AARCH64);
1000 
1001  /* close the CTI gate for all events */
1002  if (retval == ERROR_OK)
1003  retval = arm_cti_write_reg(armv8->cti, CTI_GATE, 0);
1004  /* discard async exceptions */
1005  if (retval == ERROR_OK)
1006  retval = dpm->instr_cpsr_sync(dpm);
1007  if (retval != ERROR_OK)
1008  return retval;
1009 
1010  /* Examine debug reason */
1012 
1013  /* save the memory address that triggered the watchpoint */
1015  uint32_t tmp;
1016 
1017  retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1018  armv8->debug_base + CPUV8_DBG_EDWAR0, &tmp);
1019  if (retval != ERROR_OK)
1020  return retval;
1021  target_addr_t edwar = tmp;
1022 
1023  /* EDWAR[63:32] has unknown content in aarch32 state */
1024  if (core_state == ARM_STATE_AARCH64) {
1025  retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1026  armv8->debug_base + CPUV8_DBG_EDWAR1, &tmp);
1027  if (retval != ERROR_OK)
1028  return retval;
1029  edwar |= ((target_addr_t)tmp) << 32;
1030  }
1031 
1032  armv8->dpm.wp_addr = edwar;
1033  }
1034 
1035  retval = armv8_dpm_read_current_registers(&armv8->dpm);
1036 
1037  if (retval == ERROR_OK && armv8->post_debug_entry)
1038  retval = armv8->post_debug_entry(target);
1039 
1040  return retval;
1041 }
1042 
1044 {
1045  struct aarch64_common *aarch64 = target_to_aarch64(target);
1046  struct armv8_common *armv8 = &aarch64->armv8_common;
1047  int retval;
1048  enum arm_mode target_mode = ARM_MODE_ANY;
1049  uint32_t instr;
1050 
1051  switch (armv8->arm.core_mode) {
1052  case ARMV8_64_EL0T:
1053  target_mode = ARMV8_64_EL1H;
1054  /* fall through */
1055  case ARMV8_64_EL1T:
1056  case ARMV8_64_EL1H:
1057  instr = ARMV8_MRS(SYSTEM_SCTLR_EL1, 0);
1058  break;
1059  case ARMV8_64_EL2T:
1060  case ARMV8_64_EL2H:
1061  instr = ARMV8_MRS(SYSTEM_SCTLR_EL2, 0);
1062  break;
1063  case ARMV8_64_EL3H:
1064  case ARMV8_64_EL3T:
1065  instr = ARMV8_MRS(SYSTEM_SCTLR_EL3, 0);
1066  break;
1067 
1068  case ARM_MODE_SVC:
1069  case ARM_MODE_ABT:
1070  case ARM_MODE_FIQ:
1071  case ARM_MODE_IRQ:
1072  case ARM_MODE_HYP:
1073  case ARM_MODE_UND:
1074  case ARM_MODE_SYS:
1075  case ARM_MODE_MON:
1076  instr = ARMV4_5_MRC(15, 0, 0, 1, 0, 0);
1077  break;
1078 
1079  default:
1080  LOG_ERROR("cannot read system control register in this mode: (%s : 0x%x)",
1081  armv8_mode_name(armv8->arm.core_mode), armv8->arm.core_mode);
1082  return ERROR_FAIL;
1083  }
1084 
1085  if (target_mode != ARM_MODE_ANY)
1086  armv8_dpm_modeswitch(&armv8->dpm, target_mode);
1087 
1088  retval = armv8->dpm.instr_read_data_r0_64(&armv8->dpm, instr, &aarch64->system_control_reg);
1089  if (retval != ERROR_OK)
1090  return retval;
1091 
1092  if (target_mode != ARM_MODE_ANY)
1094 
1095  LOG_DEBUG("System_register: %8.8" PRIx64, aarch64->system_control_reg);
1096  aarch64->system_control_reg_curr = aarch64->system_control_reg;
1097 
1098  if (armv8->armv8_mmu.armv8_cache.info == -1) {
1099  armv8_identify_cache(armv8);
1100  armv8_read_mpidr(armv8);
1101  }
1102  if (armv8->is_armv8r) {
1103  armv8->armv8_mmu.mmu_enabled = 0;
1104  } else {
1105  armv8->armv8_mmu.mmu_enabled =
1106  (aarch64->system_control_reg & 0x1U) ? 1 : 0;
1107  }
1109  (aarch64->system_control_reg & 0x4U) ? 1 : 0;
1111  (aarch64->system_control_reg & 0x1000U) ? 1 : 0;
1112  return ERROR_OK;
1113 }
1114 
1115 /*
1116  * single-step a target
1117  */
1118 static int aarch64_step(struct target *target, bool current, target_addr_t address,
1119  bool handle_breakpoints)
1120 {
1121  struct armv8_common *armv8 = target_to_armv8(target);
1122  struct aarch64_common *aarch64 = target_to_aarch64(target);
1123  int saved_retval = ERROR_OK;
1124  int poll_retval;
1125  int retval;
1126  uint32_t edecr;
1127 
1129 
1130  if (target->state != TARGET_HALTED) {
1131  LOG_TARGET_ERROR(target, "not halted");
1132  return ERROR_TARGET_NOT_HALTED;
1133  }
1134 
1135  retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1136  armv8->debug_base + CPUV8_DBG_EDECR, &edecr);
1137  /* make sure EDECR.SS is not set when restoring the register */
1138 
1139  if (retval == ERROR_OK) {
1140  edecr &= ~0x4;
1141  /* set EDECR.SS to enter hardware step mode */
1142  retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1143  armv8->debug_base + CPUV8_DBG_EDECR, (edecr|0x4));
1144  }
1145  /* disable interrupts while stepping */
1146  if (retval == ERROR_OK && aarch64->isrmasking_mode == AARCH64_ISRMASK_ON)
1147  retval = aarch64_set_dscr_bits(target, 0x3 << 22, 0x3 << 22);
1148  /* bail out if stepping setup has failed */
1149  if (retval != ERROR_OK)
1150  return retval;
1151 
1152  if (target->smp && current) {
1153  /*
1154  * isolate current target so that it doesn't get resumed
1155  * together with the others
1156  */
1157  retval = arm_cti_gate_channel(armv8->cti, 1);
1158  /* resume all other targets in the group */
1159  if (retval == ERROR_OK)
1160  retval = aarch64_step_restart_smp(target);
1161  if (retval != ERROR_OK) {
1162  LOG_ERROR("Failed to restart non-stepping targets in SMP group");
1163  return retval;
1164  }
1165  LOG_DEBUG("Restarted all non-stepping targets in SMP group");
1166  }
1167 
1168  /* all other targets running, restore and restart the current target */
1169  retval = aarch64_restore_one(target, current, &address, false, false);
1170  if (retval == ERROR_OK)
1172 
1173  if (retval != ERROR_OK)
1174  return retval;
1175 
1176  LOG_DEBUG("target step-resumed at 0x%" PRIx64, address);
1177  if (!handle_breakpoints)
1179 
1180  int64_t then = timeval_ms();
1181  for (;;) {
1182  int stepped;
1183  uint32_t prsr;
1184 
1186  PRSR_SDR|PRSR_HALT, PRSR_SDR|PRSR_HALT, &stepped, &prsr);
1187  if (retval != ERROR_OK || stepped)
1188  break;
1189 
1190  if (timeval_ms() > then + 100) {
1191  LOG_ERROR("timeout waiting for target %s halt after step",
1192  target_name(target));
1193  retval = ERROR_TARGET_TIMEOUT;
1194  break;
1195  }
1196  }
1197 
1198  /*
1199  * At least on one SoC (Renesas R8A7795) stepping over a WFI instruction
1200  * causes a timeout. The core takes the step but doesn't complete it and so
1201  * debug state is never entered. However, you can manually halt the core
1202  * as an external debug even is also a WFI wakeup event.
1203  */
1204  if (retval == ERROR_TARGET_TIMEOUT)
1205  saved_retval = aarch64_halt_one(target, HALT_SYNC);
1206 
1207  poll_retval = aarch64_poll(target);
1208 
1209  /* restore EDECR */
1210  retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1211  armv8->debug_base + CPUV8_DBG_EDECR, edecr);
1212  if (retval != ERROR_OK)
1213  return retval;
1214 
1215  /* restore interrupts */
1216  if (aarch64->isrmasking_mode == AARCH64_ISRMASK_ON) {
1217  retval = aarch64_set_dscr_bits(target, 0x3 << 22, 0);
1218  if (retval != ERROR_OK)
1219  return ERROR_OK;
1220  }
1221 
1222  if (saved_retval != ERROR_OK)
1223  return saved_retval;
1224 
1225  if (poll_retval != ERROR_OK)
1226  return poll_retval;
1227 
1228  return ERROR_OK;
1229 }
1230 
1231 static int aarch64_restore_context(struct target *target, bool bpwp)
1232 {
1233  struct armv8_common *armv8 = target_to_armv8(target);
1234  struct arm *arm = &armv8->arm;
1235 
1236  int retval;
1237 
1238  LOG_DEBUG("%s", target_name(target));
1239 
1240  if (armv8->pre_restore_context)
1241  armv8->pre_restore_context(target);
1242 
1243  retval = armv8_dpm_write_dirty_registers(&armv8->dpm, bpwp);
1244  if (retval == ERROR_OK) {
1245  /* registers are now invalid */
1248  }
1249 
1250  return retval;
1251 }
1252 
1253 /*
1254  * Cortex-A8 Breakpoint and watchpoint functions
1255  */
1256 
1257 /* Setup hardware Breakpoint Register Pair */
1259  struct breakpoint *breakpoint, uint8_t matchmode)
1260 {
1261  int retval;
1262  int brp_i = 0;
1263  uint32_t control;
1264  uint8_t byte_addr_select = 0x0F;
1265  struct aarch64_common *aarch64 = target_to_aarch64(target);
1266  struct armv8_common *armv8 = &aarch64->armv8_common;
1267  struct aarch64_brp *brp_list = aarch64->brp_list;
1268 
1269  if (breakpoint->is_set) {
1270  LOG_WARNING("breakpoint already set");
1271  return ERROR_OK;
1272  }
1273 
1274  if (breakpoint->type == BKPT_HARD) {
1275  int64_t bpt_value;
1276  while (brp_list[brp_i].used && (brp_i < aarch64->brp_num))
1277  brp_i++;
1278  if (brp_i >= aarch64->brp_num) {
1279  LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1281  }
1282  breakpoint_hw_set(breakpoint, brp_i);
1283  if (breakpoint->length == 2)
1284  byte_addr_select = (3 << (breakpoint->address & 0x02));
1285  control = ((matchmode & 0x7) << 20)
1286  | (1 << 13)
1287  | (byte_addr_select << 5)
1288  | (3 << 1) | 1;
1289  brp_list[brp_i].used = 1;
1290  brp_list[brp_i].value = breakpoint->address & 0xFFFFFFFFFFFFFFFCULL;
1291  brp_list[brp_i].control = control;
1292  bpt_value = brp_list[brp_i].value;
1293 
1295  + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].brpn,
1296  (uint32_t)(bpt_value & 0xFFFFFFFF));
1297  if (retval != ERROR_OK)
1298  return retval;
1300  + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].brpn,
1301  (uint32_t)(bpt_value >> 32));
1302  if (retval != ERROR_OK)
1303  return retval;
1304 
1306  + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].brpn,
1307  brp_list[brp_i].control);
1308  if (retval != ERROR_OK)
1309  return retval;
1310  LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1311  brp_list[brp_i].control,
1312  brp_list[brp_i].value);
1313 
1314  } else if (breakpoint->type == BKPT_SOFT) {
1315  uint32_t opcode;
1316  uint8_t code[4];
1317 
1319  opcode = ARMV8_HLT(11);
1320 
1321  if (breakpoint->length != 4)
1322  LOG_ERROR("bug: breakpoint length should be 4 in AArch64 mode");
1323  } else {
1332  opcode = (breakpoint->length == 4) ? ARMV8_HLT_A1(11) :
1333  (uint32_t) (ARMV8_HLT_T1(11) | ARMV8_HLT_T1(11) << 16);
1334 
1335  if (breakpoint->length == 3)
1336  breakpoint->length = 4;
1337  }
1338 
1339  buf_set_u32(code, 0, 32, opcode);
1340 
1341  retval = target_read_memory(target,
1342  breakpoint->address & 0xFFFFFFFFFFFFFFFEULL,
1343  breakpoint->length, 1,
1345  if (retval != ERROR_OK)
1346  return retval;
1347 
1349  breakpoint->address & 0xFFFFFFFFFFFFFFFEULL,
1350  breakpoint->length);
1351 
1352  retval = target_write_memory(target,
1353  breakpoint->address & 0xFFFFFFFFFFFFFFFEULL,
1354  breakpoint->length, 1, code);
1355  if (retval != ERROR_OK)
1356  return retval;
1357 
1359  breakpoint->address & 0xFFFFFFFFFFFFFFFEULL,
1360  breakpoint->length);
1361 
1363  breakpoint->address & 0xFFFFFFFFFFFFFFFEULL,
1364  breakpoint->length);
1365 
1366  breakpoint->is_set = true;
1367  }
1368 
1369  /* Ensure that halting debug mode is enable */
1371  if (retval != ERROR_OK) {
1372  LOG_DEBUG("Failed to set DSCR.HDE");
1373  return retval;
1374  }
1375 
1376  return ERROR_OK;
1377 }
1378 
1380  struct breakpoint *breakpoint, uint8_t matchmode)
1381 {
1382  int retval = ERROR_FAIL;
1383  int brp_i = 0;
1384  uint32_t control;
1385  uint8_t byte_addr_select = 0x0F;
1386  struct aarch64_common *aarch64 = target_to_aarch64(target);
1387  struct armv8_common *armv8 = &aarch64->armv8_common;
1388  struct aarch64_brp *brp_list = aarch64->brp_list;
1389 
1390  if (breakpoint->is_set) {
1391  LOG_WARNING("breakpoint already set");
1392  return retval;
1393  }
1394  /*check available context BRPs*/
1395  while ((brp_list[brp_i].used ||
1396  (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < aarch64->brp_num))
1397  brp_i++;
1398 
1399  if (brp_i >= aarch64->brp_num) {
1400  LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1401  return ERROR_FAIL;
1402  }
1403 
1404  breakpoint_hw_set(breakpoint, brp_i);
1405  control = ((matchmode & 0x7) << 20)
1406  | (1 << 13)
1407  | (byte_addr_select << 5)
1408  | (3 << 1) | 1;
1409  brp_list[brp_i].used = 1;
1410  brp_list[brp_i].value = (breakpoint->asid);
1411  brp_list[brp_i].control = control;
1413  + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].brpn,
1414  brp_list[brp_i].value);
1415  if (retval != ERROR_OK)
1416  return retval;
1418  + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].brpn,
1419  brp_list[brp_i].control);
1420  if (retval != ERROR_OK)
1421  return retval;
1422  LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1423  brp_list[brp_i].control,
1424  brp_list[brp_i].value);
1425  return ERROR_OK;
1426 
1427 }
1428 
1430 {
1431  int retval = ERROR_FAIL;
1432  int brp_1 = 0; /* holds the contextID pair */
1433  int brp_2 = 0; /* holds the IVA pair */
1434  uint32_t control_ctx, control_iva;
1435  uint8_t ctx_byte_addr_select = 0x0F;
1436  uint8_t iva_byte_addr_select = 0x0F;
1437  uint8_t ctx_machmode = 0x03;
1438  uint8_t iva_machmode = 0x01;
1439  struct aarch64_common *aarch64 = target_to_aarch64(target);
1440  struct armv8_common *armv8 = &aarch64->armv8_common;
1441  struct aarch64_brp *brp_list = aarch64->brp_list;
1442 
1443  if (breakpoint->is_set) {
1444  LOG_WARNING("breakpoint already set");
1445  return retval;
1446  }
1447  /*check available context BRPs*/
1448  while ((brp_list[brp_1].used ||
1449  (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < aarch64->brp_num))
1450  brp_1++;
1451 
1452  LOG_DEBUG("brp(CTX) found num: %d", brp_1);
1453  if (brp_1 >= aarch64->brp_num) {
1454  LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1455  return ERROR_FAIL;
1456  }
1457 
1458  while ((brp_list[brp_2].used ||
1459  (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < aarch64->brp_num))
1460  brp_2++;
1461 
1462  LOG_DEBUG("brp(IVA) found num: %d", brp_2);
1463  if (brp_2 >= aarch64->brp_num) {
1464  LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1465  return ERROR_FAIL;
1466  }
1467 
1468  breakpoint_hw_set(breakpoint, brp_1);
1469  breakpoint->linked_brp = brp_2;
1470  control_ctx = ((ctx_machmode & 0x7) << 20)
1471  | (brp_2 << 16)
1472  | (0 << 14)
1473  | (ctx_byte_addr_select << 5)
1474  | (3 << 1) | 1;
1475  brp_list[brp_1].used = 1;
1476  brp_list[brp_1].value = (breakpoint->asid);
1477  brp_list[brp_1].control = control_ctx;
1479  + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_1].brpn,
1480  brp_list[brp_1].value);
1481  if (retval != ERROR_OK)
1482  return retval;
1484  + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_1].brpn,
1485  brp_list[brp_1].control);
1486  if (retval != ERROR_OK)
1487  return retval;
1488 
1489  control_iva = ((iva_machmode & 0x7) << 20)
1490  | (brp_1 << 16)
1491  | (1 << 13)
1492  | (iva_byte_addr_select << 5)
1493  | (3 << 1) | 1;
1494  brp_list[brp_2].used = 1;
1495  brp_list[brp_2].value = breakpoint->address & 0xFFFFFFFFFFFFFFFCULL;
1496  brp_list[brp_2].control = control_iva;
1498  + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_2].brpn,
1499  brp_list[brp_2].value & 0xFFFFFFFF);
1500  if (retval != ERROR_OK)
1501  return retval;
1503  + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_2].brpn,
1504  brp_list[brp_2].value >> 32);
1505  if (retval != ERROR_OK)
1506  return retval;
1508  + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_2].brpn,
1509  brp_list[brp_2].control);
1510  if (retval != ERROR_OK)
1511  return retval;
1512 
1513  return ERROR_OK;
1514 }
1515 
1517 {
1518  int retval;
1519  struct aarch64_common *aarch64 = target_to_aarch64(target);
1520  struct armv8_common *armv8 = &aarch64->armv8_common;
1521  struct aarch64_brp *brp_list = aarch64->brp_list;
1522 
1523  if (!breakpoint->is_set) {
1524  LOG_WARNING("breakpoint not set");
1525  return ERROR_OK;
1526  }
1527 
1528  if (breakpoint->type == BKPT_HARD) {
1529  if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1530  int brp_i = breakpoint->number;
1531  int brp_j = breakpoint->linked_brp;
1532  if (brp_i >= aarch64->brp_num) {
1533  LOG_DEBUG("Invalid BRP number in breakpoint");
1534  return ERROR_OK;
1535  }
1536  LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1537  brp_list[brp_i].control, brp_list[brp_i].value);
1538  brp_list[brp_i].used = 0;
1539  brp_list[brp_i].value = 0;
1540  brp_list[brp_i].control = 0;
1542  + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].brpn,
1543  brp_list[brp_i].control);
1544  if (retval != ERROR_OK)
1545  return retval;
1547  + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].brpn,
1548  (uint32_t)brp_list[brp_i].value);
1549  if (retval != ERROR_OK)
1550  return retval;
1552  + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].brpn,
1553  (uint32_t)brp_list[brp_i].value);
1554  if (retval != ERROR_OK)
1555  return retval;
1556  if ((brp_j < 0) || (brp_j >= aarch64->brp_num)) {
1557  LOG_DEBUG("Invalid BRP number in breakpoint");
1558  return ERROR_OK;
1559  }
1560  LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_j,
1561  brp_list[brp_j].control, brp_list[brp_j].value);
1562  brp_list[brp_j].used = 0;
1563  brp_list[brp_j].value = 0;
1564  brp_list[brp_j].control = 0;
1566  + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_j].brpn,
1567  brp_list[brp_j].control);
1568  if (retval != ERROR_OK)
1569  return retval;
1571  + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_j].brpn,
1572  (uint32_t)brp_list[brp_j].value);
1573  if (retval != ERROR_OK)
1574  return retval;
1576  + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_j].brpn,
1577  (uint32_t)brp_list[brp_j].value);
1578  if (retval != ERROR_OK)
1579  return retval;
1580 
1581  breakpoint->linked_brp = 0;
1582  breakpoint->is_set = false;
1583  return ERROR_OK;
1584 
1585  } else {
1586  int brp_i = breakpoint->number;
1587  if (brp_i >= aarch64->brp_num) {
1588  LOG_DEBUG("Invalid BRP number in breakpoint");
1589  return ERROR_OK;
1590  }
1591  LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_i,
1592  brp_list[brp_i].control, brp_list[brp_i].value);
1593  brp_list[brp_i].used = 0;
1594  brp_list[brp_i].value = 0;
1595  brp_list[brp_i].control = 0;
1597  + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].brpn,
1598  brp_list[brp_i].control);
1599  if (retval != ERROR_OK)
1600  return retval;
1602  + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].brpn,
1603  brp_list[brp_i].value);
1604  if (retval != ERROR_OK)
1605  return retval;
1606 
1608  + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].brpn,
1609  (uint32_t)brp_list[brp_i].value);
1610  if (retval != ERROR_OK)
1611  return retval;
1612  breakpoint->is_set = false;
1613  return ERROR_OK;
1614  }
1615  } else {
1616  /* restore original instruction (kept in target endianness) */
1617 
1619  breakpoint->address & 0xFFFFFFFFFFFFFFFEULL,
1620  breakpoint->length);
1621 
1622  if (breakpoint->length == 4) {
1623  retval = target_write_memory(target,
1624  breakpoint->address & 0xFFFFFFFFFFFFFFFEULL,
1625  4, 1, breakpoint->orig_instr);
1626  if (retval != ERROR_OK)
1627  return retval;
1628  } else {
1629  retval = target_write_memory(target,
1630  breakpoint->address & 0xFFFFFFFFFFFFFFFEULL,
1631  2, 1, breakpoint->orig_instr);
1632  if (retval != ERROR_OK)
1633  return retval;
1634  }
1635 
1637  breakpoint->address & 0xFFFFFFFFFFFFFFFEULL,
1638  breakpoint->length);
1639 
1641  breakpoint->address & 0xFFFFFFFFFFFFFFFEULL,
1642  breakpoint->length);
1643  }
1644  breakpoint->is_set = false;
1645 
1646  return ERROR_OK;
1647 }
1648 
1650  struct breakpoint *breakpoint)
1651 {
1652  struct aarch64_common *aarch64 = target_to_aarch64(target);
1653 
1654  if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1655  LOG_INFO("no hardware breakpoint available");
1657  }
1658 
1659  if (breakpoint->type == BKPT_HARD)
1660  aarch64->brp_num_available--;
1661 
1662  return aarch64_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1663 }
1664 
1666  struct breakpoint *breakpoint)
1667 {
1668  struct aarch64_common *aarch64 = target_to_aarch64(target);
1669 
1670  if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1671  LOG_INFO("no hardware breakpoint available");
1673  }
1674 
1675  if (breakpoint->type == BKPT_HARD)
1676  aarch64->brp_num_available--;
1677 
1678  return aarch64_set_context_breakpoint(target, breakpoint, 0x02); /* asid match */
1679 }
1680 
1682  struct breakpoint *breakpoint)
1683 {
1684  struct aarch64_common *aarch64 = target_to_aarch64(target);
1685 
1686  if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1687  LOG_INFO("no hardware breakpoint available");
1689  }
1690 
1691  if (breakpoint->type == BKPT_HARD)
1692  aarch64->brp_num_available--;
1693 
1694  return aarch64_set_hybrid_breakpoint(target, breakpoint); /* ??? */
1695 }
1696 
1698 {
1699  struct aarch64_common *aarch64 = target_to_aarch64(target);
1700 
1701 #if 0
1702 /* It is perfectly possible to remove breakpoints while the target is running */
1703  if (target->state != TARGET_HALTED) {
1704  LOG_WARNING("target not halted");
1705  return ERROR_TARGET_NOT_HALTED;
1706  }
1707 #endif
1708 
1709  if (breakpoint->is_set) {
1711  if (breakpoint->type == BKPT_HARD)
1712  aarch64->brp_num_available++;
1713  }
1714 
1715  return ERROR_OK;
1716 }
1717 
1718 /* Setup hardware Watchpoint Register Pair */
1720  struct watchpoint *watchpoint)
1721 {
1722  int retval;
1723  int wp_i = 0;
1724  uint32_t control, offset, length;
1725  struct aarch64_common *aarch64 = target_to_aarch64(target);
1726  struct armv8_common *armv8 = &aarch64->armv8_common;
1727  struct aarch64_brp *wp_list = aarch64->wp_list;
1728 
1729  if (watchpoint->is_set) {
1730  LOG_WARNING("watchpoint already set");
1731  return ERROR_OK;
1732  }
1733 
1734  while (wp_list[wp_i].used && (wp_i < aarch64->wp_num))
1735  wp_i++;
1736  if (wp_i >= aarch64->wp_num) {
1737  LOG_ERROR("ERROR Can not find free Watchpoint Register Pair");
1739  }
1740 
1741  control = (1 << 0) /* enable */
1742  | (3 << 1) /* both user and privileged access */
1743  | (1 << 13); /* higher mode control */
1744 
1745  switch (watchpoint->rw) {
1746  case WPT_READ:
1747  control |= 1 << 3;
1748  break;
1749  case WPT_WRITE:
1750  control |= 2 << 3;
1751  break;
1752  case WPT_ACCESS:
1753  control |= 3 << 3;
1754  break;
1755  }
1756 
1757  /* Match up to 8 bytes. */
1758  offset = watchpoint->address & 7;
1760  if (offset + length > sizeof(uint64_t)) {
1761  length = sizeof(uint64_t) - offset;
1762  LOG_WARNING("Adjust watchpoint match inside 8-byte boundary");
1763  }
1764  for (; length > 0; offset++, length--)
1765  control |= (1 << offset) << 5;
1766 
1767  wp_list[wp_i].value = watchpoint->address & 0xFFFFFFFFFFFFFFF8ULL;
1768  wp_list[wp_i].control = control;
1769 
1771  + CPUV8_DBG_WVR_BASE + 16 * wp_list[wp_i].brpn,
1772  (uint32_t)(wp_list[wp_i].value & 0xFFFFFFFF));
1773  if (retval != ERROR_OK)
1774  return retval;
1776  + CPUV8_DBG_WVR_BASE + 4 + 16 * wp_list[wp_i].brpn,
1777  (uint32_t)(wp_list[wp_i].value >> 32));
1778  if (retval != ERROR_OK)
1779  return retval;
1780 
1782  + CPUV8_DBG_WCR_BASE + 16 * wp_list[wp_i].brpn,
1783  control);
1784  if (retval != ERROR_OK)
1785  return retval;
1786  LOG_DEBUG("wp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, wp_i,
1787  wp_list[wp_i].control, wp_list[wp_i].value);
1788 
1789  /* Ensure that halting debug mode is enable */
1791  if (retval != ERROR_OK) {
1792  LOG_DEBUG("Failed to set DSCR.HDE");
1793  return retval;
1794  }
1795 
1796  wp_list[wp_i].used = 1;
1797  watchpoint_set(watchpoint, wp_i);
1798 
1799  return ERROR_OK;
1800 }
1801 
1802 /* Clear hardware Watchpoint Register Pair */
1804  struct watchpoint *watchpoint)
1805 {
1806  int retval;
1807  struct aarch64_common *aarch64 = target_to_aarch64(target);
1808  struct armv8_common *armv8 = &aarch64->armv8_common;
1809  struct aarch64_brp *wp_list = aarch64->wp_list;
1810 
1811  if (!watchpoint->is_set) {
1812  LOG_WARNING("watchpoint not set");
1813  return ERROR_OK;
1814  }
1815 
1816  int wp_i = watchpoint->number;
1817  if (wp_i >= aarch64->wp_num) {
1818  LOG_DEBUG("Invalid WP number in watchpoint");
1819  return ERROR_OK;
1820  }
1821  LOG_DEBUG("rwp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, wp_i,
1822  wp_list[wp_i].control, wp_list[wp_i].value);
1823  wp_list[wp_i].used = 0;
1824  wp_list[wp_i].value = 0;
1825  wp_list[wp_i].control = 0;
1827  + CPUV8_DBG_WCR_BASE + 16 * wp_list[wp_i].brpn,
1828  wp_list[wp_i].control);
1829  if (retval != ERROR_OK)
1830  return retval;
1832  + CPUV8_DBG_WVR_BASE + 16 * wp_list[wp_i].brpn,
1833  wp_list[wp_i].value);
1834  if (retval != ERROR_OK)
1835  return retval;
1836 
1838  + CPUV8_DBG_WVR_BASE + 4 + 16 * wp_list[wp_i].brpn,
1839  (uint32_t)wp_list[wp_i].value);
1840  if (retval != ERROR_OK)
1841  return retval;
1842  watchpoint->is_set = false;
1843 
1844  return ERROR_OK;
1845 }
1846 
1848  struct watchpoint *watchpoint)
1849 {
1850  int retval;
1851  struct aarch64_common *aarch64 = target_to_aarch64(target);
1852 
1853  if (aarch64->wp_num_available < 1) {
1854  LOG_INFO("no hardware watchpoint available");
1856  }
1857 
1859  if (retval == ERROR_OK)
1860  aarch64->wp_num_available--;
1861 
1862  return retval;
1863 }
1864 
1866  struct watchpoint *watchpoint)
1867 {
1868  struct aarch64_common *aarch64 = target_to_aarch64(target);
1869 
1870  if (watchpoint->is_set) {
1872  aarch64->wp_num_available++;
1873  }
1874 
1875  return ERROR_OK;
1876 }
1877 
1883  struct watchpoint **hit_watchpoint)
1884 {
1886  return ERROR_FAIL;
1887 
1888  struct armv8_common *armv8 = target_to_armv8(target);
1889 
1890  target_addr_t exception_address;
1891  struct watchpoint *wp;
1892 
1893  exception_address = armv8->dpm.wp_addr;
1894 
1895  if (exception_address == 0xFFFFFFFF)
1896  return ERROR_FAIL;
1897 
1898  for (wp = target->watchpoints; wp; wp = wp->next)
1899  if (exception_address >= wp->address && exception_address < (wp->address + wp->length)) {
1900  *hit_watchpoint = wp;
1901  return ERROR_OK;
1902  }
1903 
1904  return ERROR_FAIL;
1905 }
1906 
1907 /*
1908  * Cortex-A8 Reset functions
1909  */
1910 
1911 static int aarch64_enable_reset_catch(struct target *target, bool enable)
1912 {
1913  struct armv8_common *armv8 = target_to_armv8(target);
1914  uint32_t edecr;
1915  int retval;
1916 
1917  retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1918  armv8->debug_base + CPUV8_DBG_EDECR, &edecr);
1919  LOG_DEBUG("EDECR = 0x%08" PRIx32 ", enable=%d", edecr, enable);
1920  if (retval != ERROR_OK)
1921  return retval;
1922 
1923  if (enable)
1924  edecr |= ECR_RCE;
1925  else
1926  edecr &= ~ECR_RCE;
1927 
1928  return mem_ap_write_atomic_u32(armv8->debug_ap,
1929  armv8->debug_base + CPUV8_DBG_EDECR, edecr);
1930 }
1931 
1933 {
1934  struct armv8_common *armv8 = target_to_armv8(target);
1935  uint32_t edesr;
1936  int retval;
1937  bool was_triggered;
1938 
1939  /* check if Reset Catch debug event triggered as expected */
1940  retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1941  armv8->debug_base + CPUV8_DBG_EDESR, &edesr);
1942  if (retval != ERROR_OK)
1943  return retval;
1944 
1945  was_triggered = !!(edesr & ESR_RC);
1946  LOG_DEBUG("Reset Catch debug event %s",
1947  was_triggered ? "triggered" : "NOT triggered!");
1948 
1949  if (was_triggered) {
1950  /* clear pending Reset Catch debug event */
1951  edesr &= ~ESR_RC;
1952  retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1953  armv8->debug_base + CPUV8_DBG_EDESR, edesr);
1954  if (retval != ERROR_OK)
1955  return retval;
1956  }
1957 
1958  return ERROR_OK;
1959 }
1960 
1962 {
1963  struct armv8_common *armv8 = target_to_armv8(target);
1964  enum reset_types reset_config = jtag_get_reset_config();
1965  int retval;
1966 
1967  LOG_DEBUG(" ");
1968 
1969  /* Issue some kind of warm reset. */
1972  else if (reset_config & RESET_HAS_SRST) {
1973  bool srst_asserted = false;
1974 
1975  if (target->reset_halt && !(reset_config & RESET_SRST_PULLS_TRST)) {
1976  if (target_was_examined(target)) {
1977 
1978  if (reset_config & RESET_SRST_NO_GATING) {
1979  /*
1980  * SRST needs to be asserted *before* Reset Catch
1981  * debug event can be set up.
1982  */
1984  srst_asserted = true;
1985  }
1986 
1987  /* make sure to clear all sticky errors */
1989  armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
1990 
1991  /* set up Reset Catch debug event to halt the CPU after reset */
1992  retval = aarch64_enable_reset_catch(target, true);
1993  if (retval != ERROR_OK)
1994  LOG_WARNING("%s: Error enabling Reset Catch debug event; the CPU will not halt immediately after reset!",
1995  target_name(target));
1996  } else {
1997  LOG_WARNING("%s: Target not examined, will not halt immediately after reset!",
1998  target_name(target));
1999  }
2000  }
2001 
2002  /* REVISIT handle "pulls" cases, if there's
2003  * hardware that needs them to work.
2004  */
2005  if (!srst_asserted)
2007  } else {
2008  LOG_ERROR("%s: how to reset?", target_name(target));
2009  return ERROR_FAIL;
2010  }
2011 
2012  /* registers are now invalid */
2013  if (armv8->arm.core_cache) {
2016  }
2017 
2019 
2020  return ERROR_OK;
2021 }
2022 
2024 {
2025  int retval;
2026 
2027  LOG_DEBUG(" ");
2028 
2029  /* be certain SRST is off */
2031 
2033  return ERROR_OK;
2034 
2036  if (retval != ERROR_OK)
2037  return retval;
2038 
2039  retval = aarch64_poll(target);
2040  if (retval != ERROR_OK)
2041  return retval;
2042 
2043  if (target->reset_halt) {
2044  /* clear pending Reset Catch debug event */
2046  if (retval != ERROR_OK)
2047  LOG_WARNING("%s: Clearing Reset Catch debug event failed",
2048  target_name(target));
2049 
2050  /* disable Reset Catch debug event */
2051  retval = aarch64_enable_reset_catch(target, false);
2052  if (retval != ERROR_OK)
2053  LOG_WARNING("%s: Disabling Reset Catch debug event failed",
2054  target_name(target));
2055 
2056  if (target->state != TARGET_HALTED) {
2057  LOG_WARNING("%s: ran after reset and before halt ...",
2058  target_name(target));
2059  if (target_was_examined(target)) {
2060  retval = aarch64_halt_one(target, HALT_LAZY);
2061  if (retval != ERROR_OK)
2062  return retval;
2063  } else {
2065  }
2066  }
2067  }
2068 
2069  return ERROR_OK;
2070 }
2071 
2073  uint32_t size, uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2074 {
2075  struct armv8_common *armv8 = target_to_armv8(target);
2076  struct arm_dpm *dpm = &armv8->dpm;
2077  struct arm *arm = &armv8->arm;
2078  int retval;
2079 
2080  if (size > 4 && arm->core_state != ARM_STATE_AARCH64) {
2081  LOG_ERROR("memory write sizes greater than 4 bytes is only supported for AArch64 state");
2082  return ERROR_FAIL;
2083  }
2084 
2085  armv8_reg_current(arm, 1)->dirty = true;
2086 
2087  /* change DCC to normal mode if necessary */
2088  if (*dscr & DSCR_MA) {
2089  *dscr &= ~DSCR_MA;
2090  retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2091  armv8->debug_base + CPUV8_DBG_DSCR, *dscr);
2092  if (retval != ERROR_OK)
2093  return retval;
2094  }
2095 
2096  while (count) {
2097  uint32_t opcode;
2098  uint64_t data;
2099 
2100  /* write the data to store into DTRRX (and DTRTX for 64-bit) */
2101  if (size == 1)
2102  data = *buffer;
2103  else if (size == 2)
2105  else if (size == 4)
2107  else
2109 
2110  retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2111  armv8->debug_base + CPUV8_DBG_DTRRX, (uint32_t)data);
2112  if (retval == ERROR_OK && size > 4)
2113  retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2114  armv8->debug_base + CPUV8_DBG_DTRTX, (uint32_t)(data >> 32));
2115  if (retval != ERROR_OK)
2116  return retval;
2117 
2119  if (size <= 4)
2121  else
2123  else
2124  retval = dpm->instr_execute(dpm, ARMV4_5_MRC(14, 0, 1, 0, 5, 0));
2125  if (retval != ERROR_OK)
2126  return retval;
2127 
2128  if (size == 1)
2129  opcode = armv8_opcode(armv8, ARMV8_OPC_STRB_IP);
2130  else if (size == 2)
2131  opcode = armv8_opcode(armv8, ARMV8_OPC_STRH_IP);
2132  else if (size == 4)
2133  opcode = armv8_opcode(armv8, ARMV8_OPC_STRW_IP);
2134  else
2135  opcode = armv8_opcode(armv8, ARMV8_OPC_STRD_IP);
2136 
2137  retval = dpm->instr_execute(dpm, opcode);
2138  if (retval != ERROR_OK)
2139  return retval;
2140 
2141  /* Advance */
2142  buffer += size;
2143  --count;
2144  }
2145 
2146  return ERROR_OK;
2147 }
2148 
2150  uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2151 {
2152  struct armv8_common *armv8 = target_to_armv8(target);
2153  struct arm *arm = &armv8->arm;
2154  int retval;
2155 
2156  armv8_reg_current(arm, 1)->dirty = true;
2157 
2158  /* Step 1.d - Change DCC to memory mode */
2159  *dscr |= DSCR_MA;
2160  retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2161  armv8->debug_base + CPUV8_DBG_DSCR, *dscr);
2162  if (retval != ERROR_OK)
2163  return retval;
2164 
2165 
2166  /* Step 2.a - Do the write */
2167  retval = mem_ap_write_buf_noincr(armv8->debug_ap,
2168  buffer, 4, count, armv8->debug_base + CPUV8_DBG_DTRRX);
2169  if (retval != ERROR_OK)
2170  return retval;
2171 
2172  /* Step 3.a - Switch DTR mode back to Normal mode */
2173  *dscr &= ~DSCR_MA;
2174  retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2175  armv8->debug_base + CPUV8_DBG_DSCR, *dscr);
2176  if (retval != ERROR_OK)
2177  return retval;
2178 
2179  return ERROR_OK;
2180 }
2181 
2183  uint64_t address, uint32_t size,
2184  uint32_t count, const uint8_t *buffer)
2185 {
2186  /* write memory through APB-AP */
2187  int retval = ERROR_COMMAND_SYNTAX_ERROR;
2188  struct armv8_common *armv8 = target_to_armv8(target);
2189  struct arm_dpm *dpm = &armv8->dpm;
2190  struct arm *arm = &armv8->arm;
2191  uint32_t dscr;
2192 
2193  if (target->state != TARGET_HALTED) {
2194  LOG_TARGET_ERROR(target, "not halted");
2195  return ERROR_TARGET_NOT_HALTED;
2196  }
2197 
2198  /* Mark register X0 as dirty, as it will be used
2199  * for transferring the data.
2200  * It will be restored automatically when exiting
2201  * debug mode
2202  */
2203  armv8_reg_current(arm, 0)->dirty = true;
2204 
2205  /* This algorithm comes from DDI0487A.g, chapter J9.1 */
2206 
2207  /* Read DSCR */
2208  retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2209  armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2210  if (retval != ERROR_OK)
2211  return retval;
2212 
2213  /* Set Normal access mode */
2214  dscr = (dscr & ~DSCR_MA);
2215  retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2216  armv8->debug_base + CPUV8_DBG_DSCR, dscr);
2217  if (retval != ERROR_OK)
2218  return retval;
2219 
2220  if (arm->core_state == ARM_STATE_AARCH64) {
2221  /* Write X0 with value 'address' using write procedure */
2222  /* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
2223  /* Step 1.c - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
2224  retval = dpm->instr_write_data_dcc_64(dpm,
2226  } else {
2227  /* Write R0 with value 'address' using write procedure */
2228  /* Step 1.a+b - Write the address for read access into DBGDTRRX */
2229  /* Step 1.c - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
2230  retval = dpm->instr_write_data_dcc(dpm,
2231  ARMV4_5_MRC(14, 0, 0, 0, 5, 0), address);
2232  }
2233 
2234  if (retval != ERROR_OK)
2235  return retval;
2236 
2237  if (size == 4 && (address % 4) == 0)
2238  retval = aarch64_write_cpu_memory_fast(target, count, buffer, &dscr);
2239  else
2241 
2242  if (retval != ERROR_OK) {
2243  /* Unset DTR mode */
2245  armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2246  dscr &= ~DSCR_MA;
2248  armv8->debug_base + CPUV8_DBG_DSCR, dscr);
2249  }
2250 
2251  /* Check for sticky abort flags in the DSCR */
2252  retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2253  armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2254  if (retval != ERROR_OK)
2255  return retval;
2256 
2257  dpm->dscr = dscr;
2258  if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
2259  /* Abort occurred - clear it and exit */
2260  LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
2262  return ERROR_FAIL;
2263  }
2264 
2265  /* Done */
2266  return ERROR_OK;
2267 }
2268 
2270  uint32_t size, uint32_t count, uint8_t *buffer, uint32_t *dscr)
2271 {
2272  struct armv8_common *armv8 = target_to_armv8(target);
2273  struct arm_dpm *dpm = &armv8->dpm;
2274  struct arm *arm = &armv8->arm;
2275  int retval;
2276 
2277  if (size > 4 && arm->core_state != ARM_STATE_AARCH64) {
2278  LOG_ERROR("memory read sizes greater than 4 bytes is only supported for AArch64 state");
2279  return ERROR_FAIL;
2280  }
2281 
2282  armv8_reg_current(arm, 1)->dirty = true;
2283 
2284  /* change DCC to normal mode (if necessary) */
2285  if (*dscr & DSCR_MA) {
2286  *dscr &= DSCR_MA;
2287  retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2288  armv8->debug_base + CPUV8_DBG_DSCR, *dscr);
2289  if (retval != ERROR_OK)
2290  return retval;
2291  }
2292 
2293  while (count) {
2294  uint32_t opcode;
2295  uint32_t lower;
2296  uint32_t higher;
2297  uint64_t data;
2298 
2299  if (size == 1)
2300  opcode = armv8_opcode(armv8, ARMV8_OPC_LDRB_IP);
2301  else if (size == 2)
2302  opcode = armv8_opcode(armv8, ARMV8_OPC_LDRH_IP);
2303  else if (size == 4)
2304  opcode = armv8_opcode(armv8, ARMV8_OPC_LDRW_IP);
2305  else
2306  opcode = armv8_opcode(armv8, ARMV8_OPC_LDRD_IP);
2307 
2308  retval = dpm->instr_execute(dpm, opcode);
2309  if (retval != ERROR_OK)
2310  return retval;
2311 
2313  if (size <= 4)
2315  else
2317  else
2318  retval = dpm->instr_execute(dpm, ARMV4_5_MCR(14, 0, 1, 0, 5, 0));
2319  if (retval != ERROR_OK)
2320  return retval;
2321 
2322  retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2323  armv8->debug_base + CPUV8_DBG_DTRTX, &lower);
2324  if (retval == ERROR_OK) {
2325  if (size > 4)
2326  retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2327  armv8->debug_base + CPUV8_DBG_DTRRX, &higher);
2328  else
2329  higher = 0;
2330  }
2331  if (retval != ERROR_OK)
2332  return retval;
2333 
2334  data = (uint64_t)lower | (uint64_t)higher << 32;
2335 
2336  if (size == 1)
2337  *buffer = (uint8_t)data;
2338  else if (size == 2)
2339  target_buffer_set_u16(target, buffer, (uint16_t)data);
2340  else if (size == 4)
2341  target_buffer_set_u32(target, buffer, (uint32_t)data);
2342  else
2344 
2345  /* Advance */
2346  buffer += size;
2347  --count;
2348  }
2349 
2350  return ERROR_OK;
2351 }
2352 
2354  uint32_t count, uint8_t *buffer, uint32_t *dscr)
2355 {
2356  struct armv8_common *armv8 = target_to_armv8(target);
2357  struct arm_dpm *dpm = &armv8->dpm;
2358  struct arm *arm = &armv8->arm;
2359  int retval;
2360  uint32_t value;
2361 
2362  /* Mark X1 as dirty */
2363  armv8_reg_current(arm, 1)->dirty = true;
2364 
2365  if (arm->core_state == ARM_STATE_AARCH64) {
2366  /* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
2368  } else {
2369  /* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
2370  retval = dpm->instr_execute(dpm, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
2371  }
2372 
2373  if (retval != ERROR_OK)
2374  return retval;
2375 
2376  /* Step 1.e - Change DCC to memory mode */
2377  *dscr |= DSCR_MA;
2378  retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2379  armv8->debug_base + CPUV8_DBG_DSCR, *dscr);
2380  if (retval != ERROR_OK)
2381  return retval;
2382 
2383  /* Step 1.f - read DBGDTRTX and discard the value */
2384  retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2385  armv8->debug_base + CPUV8_DBG_DTRTX, &value);
2386  if (retval != ERROR_OK)
2387  return retval;
2388 
2389  count--;
2390  /* Read the data - Each read of the DTRTX register causes the instruction to be reissued
2391  * Abort flags are sticky, so can be read at end of transactions
2392  *
2393  * This data is read in aligned to 32 bit boundary.
2394  */
2395 
2396  if (count) {
2397  /* Step 2.a - Loop n-1 times, each read of DBGDTRTX reads the data from [X0] and
2398  * increments X0 by 4. */
2399  retval = mem_ap_read_buf_noincr(armv8->debug_ap, buffer, 4, count,
2400  armv8->debug_base + CPUV8_DBG_DTRTX);
2401  if (retval != ERROR_OK)
2402  return retval;
2403  }
2404 
2405  /* Step 3.a - set DTR access mode back to Normal mode */
2406  *dscr &= ~DSCR_MA;
2407  retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2408  armv8->debug_base + CPUV8_DBG_DSCR, *dscr);
2409  if (retval != ERROR_OK)
2410  return retval;
2411 
2412  /* Step 3.b - read DBGDTRTX for the final value */
2413  retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2414  armv8->debug_base + CPUV8_DBG_DTRTX, &value);
2415  if (retval != ERROR_OK)
2416  return retval;
2417 
2418  target_buffer_set_u32(target, buffer + count * 4, value);
2419  return retval;
2420 }
2421 
2423  target_addr_t address, uint32_t size,
2424  uint32_t count, uint8_t *buffer)
2425 {
2426  /* read memory through APB-AP */
2427  int retval = ERROR_COMMAND_SYNTAX_ERROR;
2428  struct armv8_common *armv8 = target_to_armv8(target);
2429  struct arm_dpm *dpm = &armv8->dpm;
2430  struct arm *arm = &armv8->arm;
2431  uint32_t dscr;
2432 
2433  LOG_DEBUG("Reading CPU memory address 0x%016" PRIx64 " size %" PRIu32 " count %" PRIu32,
2434  address, size, count);
2435 
2436  if (target->state != TARGET_HALTED) {
2437  LOG_TARGET_ERROR(target, "not halted");
2438  return ERROR_TARGET_NOT_HALTED;
2439  }
2440 
2441  /* Mark register X0 as dirty, as it will be used
2442  * for transferring the data.
2443  * It will be restored automatically when exiting
2444  * debug mode
2445  */
2446  armv8_reg_current(arm, 0)->dirty = true;
2447 
2448  /* Read DSCR */
2449  retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2450  armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2451  if (retval != ERROR_OK)
2452  return retval;
2453 
2454  /* This algorithm comes from DDI0487A.g, chapter J9.1 */
2455 
2456  /* Set Normal access mode */
2457  dscr &= ~DSCR_MA;
2458  retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2459  armv8->debug_base + CPUV8_DBG_DSCR, dscr);
2460  if (retval != ERROR_OK)
2461  return retval;
2462 
2463  if (arm->core_state == ARM_STATE_AARCH64) {
2464  /* Write X0 with value 'address' using write procedure */
2465  /* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
2466  /* Step 1.c - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
2467  retval = dpm->instr_write_data_dcc_64(dpm,
2469  } else {
2470  /* Write R0 with value 'address' using write procedure */
2471  /* Step 1.a+b - Write the address for read access into DBGDTRRXint */
2472  /* Step 1.c - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
2473  retval = dpm->instr_write_data_dcc(dpm,
2474  ARMV4_5_MRC(14, 0, 0, 0, 5, 0), address);
2475  }
2476 
2477  if (retval != ERROR_OK)
2478  return retval;
2479 
2480  if (size == 4 && (address % 4) == 0)
2481  retval = aarch64_read_cpu_memory_fast(target, count, buffer, &dscr);
2482  else
2483  retval = aarch64_read_cpu_memory_slow(target, size, count, buffer, &dscr);
2484 
2485  if (dscr & DSCR_MA) {
2486  dscr &= ~DSCR_MA;
2488  armv8->debug_base + CPUV8_DBG_DSCR, dscr);
2489  }
2490 
2491  if (retval != ERROR_OK)
2492  return retval;
2493 
2494  /* Check for sticky abort flags in the DSCR */
2495  retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2496  armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2497  if (retval != ERROR_OK)
2498  return retval;
2499 
2500  dpm->dscr = dscr;
2501 
2502  if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
2503  /* Abort occurred - clear it and exit */
2504  LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
2506  return ERROR_FAIL;
2507  }
2508 
2509  /* Done */
2510  return ERROR_OK;
2511 }
2512 
2514  target_addr_t address, uint32_t size,
2515  uint32_t count, uint8_t *buffer)
2516 {
2517  int retval = ERROR_COMMAND_SYNTAX_ERROR;
2518 
2519  if (count && buffer) {
2520  /* read memory through APB-AP */
2521  retval = aarch64_mmu_modify(target, 0);
2522  if (retval != ERROR_OK)
2523  return retval;
2525  }
2526  return retval;
2527 }
2528 
2530  uint32_t size, uint32_t count, uint8_t *buffer)
2531 {
2532  int mmu_enabled = 0;
2533  int retval;
2534 
2535  /* determine if MMU was enabled on target stop */
2536  retval = aarch64_mmu(target, &mmu_enabled);
2537  if (retval != ERROR_OK)
2538  return retval;
2539 
2540  if (mmu_enabled) {
2541  /* enable MMU as we could have disabled it for phys access */
2542  retval = aarch64_mmu_modify(target, 1);
2543  if (retval != ERROR_OK)
2544  return retval;
2545  }
2547 }
2548 
2550  target_addr_t address, uint32_t size,
2551  uint32_t count, const uint8_t *buffer)
2552 {
2553  int retval = ERROR_COMMAND_SYNTAX_ERROR;
2554 
2555  if (count && buffer) {
2556  /* write memory through APB-AP */
2557  retval = aarch64_mmu_modify(target, 0);
2558  if (retval != ERROR_OK)
2559  return retval;
2561  }
2562 
2563  return retval;
2564 }
2565 
2567  uint32_t size, uint32_t count, const uint8_t *buffer)
2568 {
2569  int mmu_enabled = 0;
2570  int retval;
2571 
2572  /* determine if MMU was enabled on target stop */
2573  retval = aarch64_mmu(target, &mmu_enabled);
2574  if (retval != ERROR_OK)
2575  return retval;
2576 
2577  if (mmu_enabled) {
2578  /* enable MMU as we could have disabled it for phys access */
2579  retval = aarch64_mmu_modify(target, 1);
2580  if (retval != ERROR_OK)
2581  return retval;
2582  }
2584 }
2585 
2587 {
2588  struct target *target = priv;
2589  struct armv8_common *armv8 = target_to_armv8(target);
2590  int retval;
2591 
2593  return ERROR_OK;
2594  if (!target->dbg_msg_enabled)
2595  return ERROR_OK;
2596 
2597  if (target->state == TARGET_RUNNING) {
2598  uint32_t request;
2599  uint32_t dscr;
2600  retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2601  armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2602 
2603  /* check if we have data */
2604  while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
2605  retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2606  armv8->debug_base + CPUV8_DBG_DTRTX, &request);
2607  if (retval == ERROR_OK) {
2608  target_request(target, request);
2609  retval = mem_ap_read_atomic_u32(armv8->debug_ap,
2610  armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
2611  }
2612  }
2613  }
2614 
2615  return ERROR_OK;
2616 }
2617 
2619 {
2620  struct aarch64_common *aarch64 = target_to_aarch64(target);
2621  struct armv8_common *armv8 = &aarch64->armv8_common;
2622  struct adiv5_dap *swjdp = armv8->arm.dap;
2624  int i;
2625  int retval = ERROR_OK;
2626  uint64_t debug, ttypr;
2627  uint32_t cpuid;
2628  uint32_t tmp0, tmp1, tmp2, tmp3;
2629  debug = ttypr = cpuid = 0;
2630 
2631  if (!pc)
2632  return ERROR_FAIL;
2633 
2634  if (!armv8->debug_ap) {
2635  if (pc->adiv5_config.ap_num == DP_APSEL_INVALID) {
2636  /* Search for the APB-AB */
2637  retval = dap_find_get_ap(swjdp, AP_TYPE_APB_AP, &armv8->debug_ap);
2638  if (retval != ERROR_OK) {
2639  LOG_ERROR("Could not find APB-AP for debug access");
2640  return retval;
2641  }
2642  } else {
2643  armv8->debug_ap = dap_get_ap(swjdp, pc->adiv5_config.ap_num);
2644  if (!armv8->debug_ap) {
2645  LOG_ERROR("Cannot get AP");
2646  return ERROR_FAIL;
2647  }
2648  }
2649  }
2650 
2651  retval = mem_ap_init(armv8->debug_ap);
2652  if (retval != ERROR_OK) {
2653  LOG_ERROR("Could not initialize the APB-AP");
2654  return retval;
2655  }
2656 
2657  armv8->debug_ap->memaccess_tck = 10;
2658 
2659  if (!target->dbgbase_set) {
2660  /* Lookup Processor DAP */
2662  &armv8->debug_base, target->coreid);
2663  if (retval != ERROR_OK)
2664  return retval;
2665  LOG_DEBUG("Detected core %" PRId32 " dbgbase: " TARGET_ADDR_FMT,
2666  target->coreid, armv8->debug_base);
2667  } else
2668  armv8->debug_base = target->dbgbase;
2669 
2670  retval = mem_ap_write_atomic_u32(armv8->debug_ap,
2671  armv8->debug_base + CPUV8_DBG_OSLAR, 0);
2672  if (retval != ERROR_OK) {
2673  LOG_DEBUG("Examine %s failed", "oslock");
2674  return retval;
2675  }
2676 
2677  retval = mem_ap_read_u32(armv8->debug_ap,
2678  armv8->debug_base + CPUV8_DBG_MAINID0, &cpuid);
2679  if (retval != ERROR_OK) {
2680  LOG_DEBUG("Examine %s failed", "CPUID");
2681  return retval;
2682  }
2683 
2684  retval = mem_ap_read_u32(armv8->debug_ap,
2685  armv8->debug_base + CPUV8_DBG_MEMFEATURE0, &tmp0);
2686  retval += mem_ap_read_u32(armv8->debug_ap,
2687  armv8->debug_base + CPUV8_DBG_MEMFEATURE0 + 4, &tmp1);
2688  if (retval != ERROR_OK) {
2689  LOG_DEBUG("Examine %s failed", "Memory Model Type");
2690  return retval;
2691  }
2692  retval = mem_ap_read_u32(armv8->debug_ap,
2693  armv8->debug_base + CPUV8_DBG_DBGFEATURE0, &tmp2);
2694  retval += mem_ap_read_u32(armv8->debug_ap,
2695  armv8->debug_base + CPUV8_DBG_DBGFEATURE0 + 4, &tmp3);
2696  if (retval != ERROR_OK) {
2697  LOG_DEBUG("Examine %s failed", "ID_AA64DFR0_EL1");
2698  return retval;
2699  }
2700 
2701  retval = dap_run(armv8->debug_ap->dap);
2702  if (retval != ERROR_OK) {
2703  LOG_ERROR("%s: examination failed\n", target_name(target));
2704  return retval;
2705  }
2706 
2707  ttypr |= tmp1;
2708  ttypr = (ttypr << 32) | tmp0;
2709  debug |= tmp3;
2710  debug = (debug << 32) | tmp2;
2711 
2712  LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
2713  LOG_DEBUG("ttypr = 0x%08" PRIx64, ttypr);
2714  LOG_DEBUG("debug = 0x%08" PRIx64, debug);
2715 
2716  if (!pc->cti) {
2717  LOG_TARGET_ERROR(target, "CTI not specified");
2718  return ERROR_FAIL;
2719  }
2720 
2721  armv8->cti = pc->cti;
2722 
2723  retval = aarch64_dpm_setup(aarch64, debug);
2724  if (retval != ERROR_OK)
2725  return retval;
2726 
2727  /* Setup Breakpoint Register Pairs */
2728  aarch64->brp_num = (uint32_t)((debug >> 12) & 0x0F) + 1;
2729  aarch64->brp_num_context = (uint32_t)((debug >> 28) & 0x0F) + 1;
2730  aarch64->brp_num_available = aarch64->brp_num;
2731  aarch64->brp_list = calloc(aarch64->brp_num, sizeof(struct aarch64_brp));
2732  for (i = 0; i < aarch64->brp_num; i++) {
2733  aarch64->brp_list[i].used = 0;
2734  if (i < (aarch64->brp_num-aarch64->brp_num_context))
2735  aarch64->brp_list[i].type = BRP_NORMAL;
2736  else
2737  aarch64->brp_list[i].type = BRP_CONTEXT;
2738  aarch64->brp_list[i].value = 0;
2739  aarch64->brp_list[i].control = 0;
2740  aarch64->brp_list[i].brpn = i;
2741  }
2742 
2743  /* Setup Watchpoint Register Pairs */
2744  aarch64->wp_num = (uint32_t)((debug >> 20) & 0x0F) + 1;
2745  aarch64->wp_num_available = aarch64->wp_num;
2746  aarch64->wp_list = calloc(aarch64->wp_num, sizeof(struct aarch64_brp));
2747  for (i = 0; i < aarch64->wp_num; i++) {
2748  aarch64->wp_list[i].used = 0;
2749  aarch64->wp_list[i].type = BRP_NORMAL;
2750  aarch64->wp_list[i].value = 0;
2751  aarch64->wp_list[i].control = 0;
2752  aarch64->wp_list[i].brpn = i;
2753  }
2754 
2755  LOG_DEBUG("Configured %i hw breakpoints, %i watchpoints",
2756  aarch64->brp_num, aarch64->wp_num);
2757 
2762  return ERROR_OK;
2763 }
2764 
2765 static int aarch64_examine(struct target *target)
2766 {
2767  int retval = ERROR_OK;
2768 
2769  /* don't re-probe hardware after each reset */
2771  retval = aarch64_examine_first(target);
2772 
2773  /* Configure core debug access */
2774  if (retval == ERROR_OK)
2776 
2777  if (retval == ERROR_OK)
2778  retval = aarch64_poll(target);
2779 
2780  return retval;
2781 }
2782 
2783 /*
2784  * Cortex-A8 target creation and initialization
2785  */
2786 
2787 static int aarch64_init_target(struct command_context *cmd_ctx,
2788  struct target *target)
2789 {
2790  /* examine_first() does a bunch of this */
2792  return ERROR_OK;
2793 }
2794 
2796  struct aarch64_common *aarch64, struct adiv5_dap *dap)
2797 {
2798  struct armv8_common *armv8 = &aarch64->armv8_common;
2799 
2800  /* Setup struct aarch64_common */
2802  armv8->arm.dap = dap;
2803 
2804  /* register arch-specific functions */
2805  armv8->examine_debug_reason = NULL;
2807  armv8->pre_restore_context = NULL;
2809 
2810  armv8_init_arch_info(target, armv8);
2813 
2814  return ERROR_OK;
2815 }
2816 
2817 static int armv8r_target_create(struct target *target, Jim_Interp *interp)
2818 {
2820  struct aarch64_common *aarch64;
2821 
2823  return ERROR_FAIL;
2824 
2825  aarch64 = calloc(1, sizeof(struct aarch64_common));
2826  if (!aarch64) {
2827  LOG_ERROR("Out of memory");
2828  return ERROR_FAIL;
2829  }
2830 
2831  aarch64->armv8_common.is_armv8r = true;
2832 
2833  return aarch64_init_arch_info(target, aarch64, pc->adiv5_config.dap);
2834 }
2835 
2836 static int aarch64_target_create(struct target *target, Jim_Interp *interp)
2837 {
2839  struct aarch64_common *aarch64;
2840 
2842  return ERROR_FAIL;
2843 
2844  aarch64 = calloc(1, sizeof(struct aarch64_common));
2845  if (!aarch64) {
2846  LOG_ERROR("Out of memory");
2847  return ERROR_FAIL;
2848  }
2849 
2850  aarch64->armv8_common.is_armv8r = false;
2851 
2852  return aarch64_init_arch_info(target, aarch64, pc->adiv5_config.dap);
2853 }
2854 
2856 {
2857  struct aarch64_common *aarch64 = target_to_aarch64(target);
2858  struct armv8_common *armv8 = &aarch64->armv8_common;
2859  struct arm_dpm *dpm = &armv8->dpm;
2860 
2861  if (armv8->debug_ap)
2862  dap_put_ap(armv8->debug_ap);
2863 
2865  free(aarch64->brp_list);
2866  free(dpm->dbp);
2867  free(dpm->dwp);
2868  free(target->private_config);
2869  free(aarch64);
2870 }
2871 
2872 static int aarch64_mmu(struct target *target, int *enabled)
2873 {
2874  struct aarch64_common *aarch64 = target_to_aarch64(target);
2875  struct armv8_common *armv8 = &aarch64->armv8_common;
2876  if (target->state != TARGET_HALTED) {
2877  LOG_TARGET_ERROR(target, "not halted");
2878  return ERROR_TARGET_NOT_HALTED;
2879  }
2880  if (armv8->is_armv8r)
2881  *enabled = 0;
2882  else
2884  return ERROR_OK;
2885 }
2886 
2888  target_addr_t *phys)
2889 {
2890  return armv8_mmu_translate_va_pa(target, virt, phys, 1);
2891 }
2892 
2893 /*
2894  * private target configuration items
2895  */
2898 };
2899 
2900 static const struct jim_nvp nvp_config_opts[] = {
2901  { .name = "-cti", .value = CFG_CTI },
2902  { .name = NULL, .value = -1 }
2903 };
2904 
2905 static int aarch64_jim_configure(struct target *target, struct jim_getopt_info *goi)
2906 {
2907  struct aarch64_private_config *pc;
2908  struct jim_nvp *n;
2909  int e;
2910 
2912  if (!pc) {
2913  pc = calloc(1, sizeof(struct aarch64_private_config));
2915  target->private_config = pc;
2916  }
2917 
2918  /*
2919  * Call adiv5_jim_configure() to parse the common DAP options
2920  * It will return JIM_CONTINUE if it didn't find any known
2921  * options, JIM_OK if it correctly parsed the topmost option
2922  * and JIM_ERR if an error occurred during parameter evaluation.
2923  * For JIM_CONTINUE, we check our own params.
2924  */
2926  if (e != JIM_CONTINUE)
2927  return e;
2928 
2929  /* parse config or cget options ... */
2930  if (goi->argc > 0) {
2931  Jim_SetEmptyResult(goi->interp);
2932 
2933  /* check first if topmost item is for us */
2935  goi->argv[0], &n);
2936  if (e != JIM_OK)
2937  return JIM_CONTINUE;
2938 
2939  e = jim_getopt_obj(goi, NULL);
2940  if (e != JIM_OK)
2941  return e;
2942 
2943  switch (n->value) {
2944  case CFG_CTI: {
2945  if (goi->is_configure) {
2946  Jim_Obj *o_cti;
2947  struct arm_cti *cti;
2948  e = jim_getopt_obj(goi, &o_cti);
2949  if (e != JIM_OK)
2950  return e;
2951  cti = cti_instance_by_jim_obj(goi->interp, o_cti);
2952  if (!cti) {
2953  Jim_SetResultString(goi->interp, "CTI name invalid!", -1);
2954  return JIM_ERR;
2955  }
2956  pc->cti = cti;
2957  } else {
2958  if (goi->argc != 0) {
2959  Jim_WrongNumArgs(goi->interp,
2960  goi->argc, goi->argv,
2961  "NO PARAMS");
2962  return JIM_ERR;
2963  }
2964 
2965  if (!pc || !pc->cti) {
2966  Jim_SetResultString(goi->interp, "CTI not configured", -1);
2967  return JIM_ERR;
2968  }
2969  Jim_SetResultString(goi->interp, arm_cti_name(pc->cti), -1);
2970  }
2971  break;
2972  }
2973 
2974  default:
2975  return JIM_CONTINUE;
2976  }
2977  }
2978 
2979  return JIM_OK;
2980 }
2981 
2982 COMMAND_HANDLER(aarch64_handle_cache_info_command)
2983 {
2985  struct armv8_common *armv8 = target_to_armv8(target);
2986 
2988  &armv8->armv8_mmu.armv8_cache);
2989 }
2990 
2991 COMMAND_HANDLER(aarch64_handle_dbginit_command)
2992 {
2994  if (!target_was_examined(target)) {
2995  LOG_ERROR("target not examined yet");
2996  return ERROR_FAIL;
2997  }
2998 
3000 }
3001 
3002 COMMAND_HANDLER(aarch64_handle_disassemble_command)
3003 {
3005 
3006  if (!target) {
3007  LOG_ERROR("No target selected");
3008  return ERROR_FAIL;
3009  }
3010 
3011  struct aarch64_common *aarch64 = target_to_aarch64(target);
3012 
3013  if (aarch64->common_magic != AARCH64_COMMON_MAGIC) {
3014  command_print(CMD, "current target isn't an AArch64");
3015  return ERROR_FAIL;
3016  }
3017 
3018  int count = 1;
3020 
3021  switch (CMD_ARGC) {
3022  case 2:
3024  /* FALL THROUGH */
3025  case 1:
3027  break;
3028  default:
3030  }
3031 
3032  return a64_disassemble(CMD, target, address, count);
3033 }
3034 
3035 COMMAND_HANDLER(aarch64_mask_interrupts_command)
3036 {
3038  struct aarch64_common *aarch64 = target_to_aarch64(target);
3039 
3040  static const struct nvp nvp_maskisr_modes[] = {
3041  { .name = "off", .value = AARCH64_ISRMASK_OFF },
3042  { .name = "on", .value = AARCH64_ISRMASK_ON },
3043  { .name = NULL, .value = -1 },
3044  };
3045  const struct nvp *n;
3046 
3047  if (CMD_ARGC > 0) {
3048  n = nvp_name2value(nvp_maskisr_modes, CMD_ARGV[0]);
3049  if (!n->name) {
3050  LOG_ERROR("Unknown parameter: %s - should be off or on", CMD_ARGV[0]);
3052  }
3053 
3054  aarch64->isrmasking_mode = n->value;
3055  }
3056 
3057  n = nvp_value2name(nvp_maskisr_modes, aarch64->isrmasking_mode);
3058  command_print(CMD, "aarch64 interrupt mask %s", n->name);
3059 
3060  return ERROR_OK;
3061 }
3062 
3063 COMMAND_HANDLER(aarch64_mcrmrc_command)
3064 {
3065  bool is_mcr = false;
3066  unsigned int arg_cnt = 5;
3067 
3068  if (!strcmp(CMD_NAME, "mcr")) {
3069  is_mcr = true;
3070  arg_cnt = 6;
3071  }
3072 
3073  if (arg_cnt != CMD_ARGC)
3075 
3077  if (!target) {
3078  command_print(CMD, "no current target");
3079  return ERROR_FAIL;
3080  }
3081  if (!target_was_examined(target)) {
3082  command_print(CMD, "%s: not yet examined", target_name(target));
3084  }
3085 
3086  struct arm *arm = target_to_arm(target);
3087  if (!is_arm(arm)) {
3088  command_print(CMD, "%s: not an ARM", target_name(target));
3089  return ERROR_FAIL;
3090  }
3091 
3092  if (target->state != TARGET_HALTED) {
3093  command_print(CMD, "Error: [%s] not halted", target_name(target));
3094  return ERROR_TARGET_NOT_HALTED;
3095  }
3096 
3097  if (arm->core_state == ARM_STATE_AARCH64) {
3098  command_print(CMD, "%s: not 32-bit arm target", target_name(target));
3099  return ERROR_FAIL;
3100  }
3101 
3102  int cpnum;
3103  uint32_t op1;
3104  uint32_t op2;
3105  uint32_t crn;
3106  uint32_t crm;
3107  uint32_t value;
3108 
3109  /* NOTE: parameter sequence matches ARM instruction set usage:
3110  * MCR pNUM, op1, rX, CRn, CRm, op2 ; write CP from rX
3111  * MRC pNUM, op1, rX, CRn, CRm, op2 ; read CP into rX
3112  * The "rX" is necessarily omitted; it uses Tcl mechanisms.
3113  */
3114  COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], cpnum);
3115  if (cpnum & ~0xf) {
3116  command_print(CMD, "coprocessor %d out of range", cpnum);
3118  }
3119 
3120  COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], op1);
3121  if (op1 & ~0x7) {
3122  command_print(CMD, "op1 %d out of range", op1);
3124  }
3125 
3126  COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], crn);
3127  if (crn & ~0xf) {
3128  command_print(CMD, "CRn %d out of range", crn);
3130  }
3131 
3132  COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], crm);
3133  if (crm & ~0xf) {
3134  command_print(CMD, "CRm %d out of range", crm);
3136  }
3137 
3138  COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], op2);
3139  if (op2 & ~0x7) {
3140  command_print(CMD, "op2 %d out of range", op2);
3142  }
3143 
3144  if (is_mcr) {
3145  COMMAND_PARSE_NUMBER(u32, CMD_ARGV[5], value);
3146 
3147  /* NOTE: parameters reordered! */
3148  /* ARMV4_5_MCR(cpnum, op1, 0, crn, crm, op2) */
3149  int retval = arm->mcr(target, cpnum, op1, op2, crn, crm, value);
3150  if (retval != ERROR_OK)
3151  return retval;
3152  } else {
3153  value = 0;
3154  /* NOTE: parameters reordered! */
3155  /* ARMV4_5_MRC(cpnum, op1, 0, crn, crm, op2) */
3156  int retval = arm->mrc(target, cpnum, op1, op2, crn, crm, &value);
3157  if (retval != ERROR_OK)
3158  return retval;
3159 
3160  command_print(CMD, "0x%" PRIx32, value);
3161  }
3162 
3163  return ERROR_OK;
3164 }
3165 
3166 static const struct command_registration aarch64_exec_command_handlers[] = {
3167  {
3168  .name = "cache_info",
3169  .handler = aarch64_handle_cache_info_command,
3170  .mode = COMMAND_EXEC,
3171  .help = "display information about target caches",
3172  .usage = "",
3173  },
3174  {
3175  .name = "dbginit",
3176  .handler = aarch64_handle_dbginit_command,
3177  .mode = COMMAND_EXEC,
3178  .help = "Initialize core debug",
3179  .usage = "",
3180  },
3181  {
3182  .name = "disassemble",
3183  .handler = aarch64_handle_disassemble_command,
3184  .mode = COMMAND_EXEC,
3185  .help = "Disassemble instructions",
3186  .usage = "address [count]",
3187  },
3188  {
3189  .name = "maskisr",
3190  .handler = aarch64_mask_interrupts_command,
3191  .mode = COMMAND_ANY,
3192  .help = "mask aarch64 interrupts during single-step",
3193  .usage = "['on'|'off']",
3194  },
3195  {
3196  .name = "mcr",
3197  .mode = COMMAND_EXEC,
3198  .handler = aarch64_mcrmrc_command,
3199  .help = "write coprocessor register",
3200  .usage = "cpnum op1 CRn CRm op2 value",
3201  },
3202  {
3203  .name = "mrc",
3204  .mode = COMMAND_EXEC,
3205  .handler = aarch64_mcrmrc_command,
3206  .help = "read coprocessor register",
3207  .usage = "cpnum op1 CRn CRm op2",
3208  },
3209  {
3210  .chain = smp_command_handlers,
3211  },
3212 
3213 
3215 };
3216 
3217 static const struct command_registration aarch64_command_handlers[] = {
3218  {
3219  .name = "arm",
3220  .mode = COMMAND_ANY,
3221  .help = "ARM Command Group",
3222  .usage = "",
3224  },
3225  {
3227  },
3228  {
3229  .name = "aarch64",
3230  .mode = COMMAND_ANY,
3231  .help = "Aarch64 command group",
3232  .usage = "",
3234  },
3236 };
3237 
3238 struct target_type aarch64_target = {
3239  .name = "aarch64",
3240 
3241  .poll = aarch64_poll,
3242  .arch_state = armv8_arch_state,
3243 
3244  .halt = aarch64_halt,
3245  .resume = aarch64_resume,
3246  .step = aarch64_step,
3247 
3248  .assert_reset = aarch64_assert_reset,
3249  .deassert_reset = aarch64_deassert_reset,
3250 
3251  /* REVISIT allow exporting VFP3 registers ... */
3252  .get_gdb_arch = armv8_get_gdb_arch,
3253  .get_gdb_reg_list = armv8_get_gdb_reg_list,
3254 
3255  .read_memory = aarch64_read_memory,
3256  .write_memory = aarch64_write_memory,
3257 
3258  .add_breakpoint = aarch64_add_breakpoint,
3259  .add_context_breakpoint = aarch64_add_context_breakpoint,
3260  .add_hybrid_breakpoint = aarch64_add_hybrid_breakpoint,
3261  .remove_breakpoint = aarch64_remove_breakpoint,
3262  .add_watchpoint = aarch64_add_watchpoint,
3263  .remove_watchpoint = aarch64_remove_watchpoint,
3264  .hit_watchpoint = aarch64_hit_watchpoint,
3265 
3266  .commands = aarch64_command_handlers,
3267  .target_create = aarch64_target_create,
3268  .target_jim_configure = aarch64_jim_configure,
3269  .init_target = aarch64_init_target,
3270  .deinit_target = aarch64_deinit_target,
3271  .examine = aarch64_examine,
3272 
3273  .read_phys_memory = aarch64_read_phys_memory,
3274  .write_phys_memory = aarch64_write_phys_memory,
3275  .mmu = aarch64_mmu,
3276  .virt2phys = aarch64_virt2phys,
3277 };
3278 
3279 struct target_type armv8r_target = {
3280  .name = "armv8r",
3281 
3282  .poll = aarch64_poll,
3283  .arch_state = armv8_arch_state,
3284 
3285  .halt = aarch64_halt,
3286  .resume = aarch64_resume,
3287  .step = aarch64_step,
3288 
3289  .assert_reset = aarch64_assert_reset,
3290  .deassert_reset = aarch64_deassert_reset,
3291 
3292  /* REVISIT allow exporting VFP3 registers ... */
3293  .get_gdb_arch = armv8_get_gdb_arch,
3294  .get_gdb_reg_list = armv8_get_gdb_reg_list,
3295 
3296  .read_memory = aarch64_read_phys_memory,
3297  .write_memory = aarch64_write_phys_memory,
3298 
3299  .add_breakpoint = aarch64_add_breakpoint,
3300  .add_context_breakpoint = aarch64_add_context_breakpoint,
3301  .add_hybrid_breakpoint = aarch64_add_hybrid_breakpoint,
3302  .remove_breakpoint = aarch64_remove_breakpoint,
3303  .add_watchpoint = aarch64_add_watchpoint,
3304  .remove_watchpoint = aarch64_remove_watchpoint,
3305  .hit_watchpoint = aarch64_hit_watchpoint,
3306 
3307  .commands = aarch64_command_handlers,
3308  .target_create = armv8r_target_create,
3309  .target_jim_configure = aarch64_jim_configure,
3310  .init_target = aarch64_init_target,
3311  .deinit_target = aarch64_deinit_target,
3312  .examine = aarch64_examine,
3313 };
int a64_disassemble(struct command_invocation *cmd, struct target *target, target_addr_t address, size_t count)
static int aarch64_write_cpu_memory_slow(struct target *target, uint32_t size, uint32_t count, const uint8_t *buffer, uint32_t *dscr)
Definition: aarch64.c:2072
static int aarch64_set_breakpoint(struct target *target, struct breakpoint *breakpoint, uint8_t matchmode)
Definition: aarch64.c:1258
static int aarch64_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
Definition: aarch64.c:1803
static int aarch64_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
Definition: aarch64.c:1847
COMMAND_HANDLER(aarch64_handle_cache_info_command)
Definition: aarch64.c:2982
static int aarch64_set_dscr_bits(struct target *target, unsigned long bit_mask, unsigned long value)
Definition: aarch64.c:288
static int aarch64_assert_reset(struct target *target)
Definition: aarch64.c:1961
halt_mode
Definition: aarch64.c:32
@ HALT_SYNC
Definition: aarch64.c:34
@ HALT_LAZY
Definition: aarch64.c:33
static void aarch64_deinit_target(struct target *target)
Definition: aarch64.c:2855
static int aarch64_add_context_breakpoint(struct target *target, struct breakpoint *breakpoint)
Definition: aarch64.c:1665
static int aarch64_write_phys_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
Definition: aarch64.c:2549
static const struct jim_nvp nvp_config_opts[]
Definition: aarch64.c:2900
static int aarch64_examine(struct target *target)
Definition: aarch64.c:2765
static const struct command_registration aarch64_exec_command_handlers[]
Definition: aarch64.c:3166
static int aarch64_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
Definition: aarch64.c:1649
static int aarch64_read_prsr(struct target *target, uint32_t *prsr)
Definition: aarch64.c:196
static int aarch64_set_context_breakpoint(struct target *target, struct breakpoint *breakpoint, uint8_t matchmode)
Definition: aarch64.c:1379
static int aarch64_mmu_modify(struct target *target, int enable)
Definition: aarch64.c:123
static int aarch64_read_cpu_memory_fast(struct target *target, uint32_t count, uint8_t *buffer, uint32_t *dscr)
Definition: aarch64.c:2353
static int aarch64_examine_first(struct target *target)
Definition: aarch64.c:2618
static int aarch64_poll(struct target *target)
Definition: aarch64.c:518
static int aarch64_init_target(struct command_context *cmd_ctx, struct target *target)
Definition: aarch64.c:2787
static int aarch64_read_cpu_memory(struct target *target, uint64_t address, uint32_t size, uint32_t count, uint8_t *buffer)
Definition: aarch64.c:2422
static int aarch64_target_create(struct target *target, Jim_Interp *interp)
Definition: aarch64.c:2836
static int aarch64_prepare_restart_one(struct target *target)
prepare single target for restart
Definition: aarch64.c:652
static int aarch64_step(struct target *target, bool current, target_addr_t address, bool handle_breakpoints)
Definition: aarch64.c:1118
static int aarch64_restore_context(struct target *target, bool bpwp)
Definition: aarch64.c:1231
static int aarch64_enable_reset_catch(struct target *target, bool enable)
Definition: aarch64.c:1911
static int aarch64_jim_configure(struct target *target, struct jim_getopt_info *goi)
Definition: aarch64.c:2905
static int aarch64_halt(struct target *target)
Definition: aarch64.c:581
static int aarch64_restore_one(struct target *target, bool current, uint64_t *address, bool handle_breakpoints, bool debug_execution)
Definition: aarch64.c:592
static int update_halt_gdb(struct target *target, enum target_debug_reason debug_reason)
Definition: aarch64.c:472
static int aarch64_mmu(struct target *target, int *enabled)
Definition: aarch64.c:2872
static int aarch64_read_phys_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
Definition: aarch64.c:2513
static int aarch64_check_state_one(struct target *target, uint32_t mask, uint32_t val, int *p_result, uint32_t *p_prsr)
Definition: aarch64.c:294
static int aarch64_restore_system_control_reg(struct target *target)
Definition: aarch64.c:59
static int aarch64_write_cpu_memory_fast(struct target *target, uint32_t count, const uint8_t *buffer, uint32_t *dscr)
Definition: aarch64.c:2149
static int aarch64_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
Definition: aarch64.c:1719
static int aarch64_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
Definition: aarch64.c:1865
static int aarch64_restart_one(struct target *target, enum restart_mode mode)
Definition: aarch64.c:740
static int aarch64_step_restart_smp(struct target *target)
Definition: aarch64.c:796
static int aarch64_dap_write_memap_register_u32(struct target *target, target_addr_t address, uint32_t value)
Definition: aarch64.c:261
static int aarch64_debug_entry(struct target *target)
Definition: aarch64.c:974
static int aarch64_prep_restart_smp(struct target *target, bool handle_breakpoints, struct target **p_first)
Definition: aarch64.c:756
static int aarch64_prepare_halt_smp(struct target *target, bool exc_target, struct target **p_first)
Definition: aarch64.c:335
struct target_type aarch64_target
Definition: aarch64.c:3238
static const struct command_registration aarch64_command_handlers[]
Definition: aarch64.c:3217
static int aarch64_write_cpu_memory(struct target *target, uint64_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
Definition: aarch64.c:2182
static int aarch64_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
Definition: aarch64.c:1516
static int aarch64_virt2phys(struct target *target, target_addr_t virt, target_addr_t *phys)
Definition: aarch64.c:2887
static int aarch64_handle_target_request(void *priv)
Definition: aarch64.c:2586
static int aarch64_clear_reset_catch(struct target *target)
Definition: aarch64.c:1932
static int aarch64_halt_one(struct target *target, enum halt_mode mode)
Definition: aarch64.c:380
static int aarch64_hit_watchpoint(struct target *target, struct watchpoint **hit_watchpoint)
find out which watchpoint hits get exception address and compare the address to watchpoints
Definition: aarch64.c:1882
aarch64_cfg_param
Definition: aarch64.c:2896
@ CFG_CTI
Definition: aarch64.c:2897
static int aarch64_deassert_reset(struct target *target)
Definition: aarch64.c:2023
static int armv8r_target_create(struct target *target, Jim_Interp *interp)
Definition: aarch64.c:2817
static int aarch64_write_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
Definition: aarch64.c:2566
struct target_type armv8r_target
Definition: aarch64.c:3279
static int aarch64_do_restart_one(struct target *target, enum restart_mode mode)
Definition: aarch64.c:698
static int aarch64_dpm_setup(struct aarch64_common *a8, uint64_t debug)
Definition: aarch64.c:273
static int aarch64_add_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
Definition: aarch64.c:1681
static int aarch64_wait_halt_one(struct target *target)
Definition: aarch64.c:313
static int aarch64_read_cpu_memory_slow(struct target *target, uint32_t size, uint32_t count, uint8_t *buffer, uint32_t *dscr)
Definition: aarch64.c:2269
static int aarch64_init_arch_info(struct target *target, struct aarch64_common *aarch64, struct adiv5_dap *dap)
Definition: aarch64.c:2795
static int aarch64_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
Definition: aarch64.c:1697
static int aarch64_resume(struct target *target, bool current, target_addr_t address, bool handle_breakpoints, bool debug_execution)
Definition: aarch64.c:869
static int aarch64_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
Definition: aarch64.c:1429
static int aarch64_read_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
Definition: aarch64.c:2529
restart_mode
Definition: aarch64.c:27
@ RESTART_SYNC
Definition: aarch64.c:29
@ RESTART_LAZY
Definition: aarch64.c:28
static int aarch64_halt_smp(struct target *target, bool exc_target)
Definition: aarch64.c:409
static int aarch64_post_debug_entry(struct target *target)
Definition: aarch64.c:1043
static int aarch64_init_debug_access(struct target *target)
Definition: aarch64.c:213
static struct aarch64_common * target_to_aarch64(struct target *target)
Definition: aarch64.h:64
#define BRP_CONTEXT
Definition: aarch64.h:23
@ AARCH64_ISRMASK_ON
Definition: aarch64.h:29
@ AARCH64_ISRMASK_OFF
Definition: aarch64.h:28
#define BRP_NORMAL
Definition: aarch64.h:22
#define AARCH64_COMMON_MAGIC
Definition: aarch64.h:12
const char * armv8_get_gdb_arch(const struct target *target)
Definition: armv8.c:1947
struct reg * armv8_reg_current(struct arm *arm, unsigned int regnum)
Definition: armv8.c:1879
int armv8_get_gdb_reg_list(struct target *target, struct reg **reg_list[], int *reg_list_size, enum target_register_class reg_class)
Definition: armv8.c:1953
static bool is_arm(struct arm *arm)
Definition: arm.h:267
arm_mode
Represent state of an ARM core.
Definition: arm.h:82
@ ARM_MODE_IRQ
Definition: arm.h:85
@ ARM_MODE_SYS
Definition: arm.h:92
@ ARM_MODE_HYP
Definition: arm.h:89
@ ARMV8_64_EL0T
Definition: arm.h:98
@ ARMV8_64_EL3H
Definition: arm.h:104
@ ARM_MODE_MON
Definition: arm.h:87
@ ARMV8_64_EL3T
Definition: arm.h:103
@ ARM_MODE_FIQ
Definition: arm.h:84
@ ARM_MODE_UND
Definition: arm.h:90
@ ARM_MODE_ANY
Definition: arm.h:106
@ ARMV8_64_EL1H
Definition: arm.h:100
@ ARM_MODE_SVC
Definition: arm.h:86
@ ARMV8_64_EL2H
Definition: arm.h:102
@ ARMV8_64_EL2T
Definition: arm.h:101
@ ARMV8_64_EL1T
Definition: arm.h:99
@ ARM_MODE_ABT
Definition: arm.h:88
static struct arm * target_to_arm(const struct target *target)
Convert target handle to generic ARM target state handle.
Definition: arm.h:261
arm_state
The PSR "T" and "J" bits define the mode of "classic ARM" cores.
Definition: arm.h:150
@ ARM_STATE_JAZELLE
Definition: arm.h:153
@ ARM_STATE_THUMB
Definition: arm.h:152
@ ARM_STATE_ARM
Definition: arm.h:151
@ ARM_STATE_AARCH64
Definition: arm.h:155
@ ARM_STATE_THUMB_EE
Definition: arm.h:154
int dap_lookup_cs_component(struct adiv5_ap *ap, uint8_t type, target_addr_t *addr, int32_t core_id)
Definition: arm_adi_v5.c:2287
int mem_ap_read_buf_noincr(struct adiv5_ap *ap, uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
Definition: arm_adi_v5.c:734
int adiv5_verify_config(struct adiv5_private_config *pc)
Definition: arm_adi_v5.c:2486
int mem_ap_read_u32(struct adiv5_ap *ap, target_addr_t address, uint32_t *value)
Asynchronous (queued) read of a word from memory or a system register.
Definition: arm_adi_v5.c:237
int dap_find_get_ap(struct adiv5_dap *dap, enum ap_type type_to_find, struct adiv5_ap **ap_out)
Definition: arm_adi_v5.c:1107
int mem_ap_write_buf_noincr(struct adiv5_ap *ap, const uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
Definition: arm_adi_v5.c:740
int adiv5_jim_configure_ext(struct target *target, struct jim_getopt_info *goi, struct adiv5_private_config *pc, enum adiv5_configure_dap_optional optional)
Definition: arm_adi_v5.c:2441
int mem_ap_read_atomic_u32(struct adiv5_ap *ap, target_addr_t address, uint32_t *value)
Synchronous read of a word from memory or a system register.
Definition: arm_adi_v5.c:266
struct adiv5_ap * dap_get_ap(struct adiv5_dap *dap, uint64_t ap_num)
Definition: arm_adi_v5.c:1189
int dap_put_ap(struct adiv5_ap *ap)
Definition: arm_adi_v5.c:1209
int mem_ap_init(struct adiv5_ap *ap)
Initialize a DAP.
Definition: arm_adi_v5.c:888
int mem_ap_write_atomic_u32(struct adiv5_ap *ap, target_addr_t address, uint32_t value)
Synchronous write of a word to memory or a system register.
Definition: arm_adi_v5.c:318
@ AP_TYPE_APB_AP
Definition: arm_adi_v5.h:491
@ ADI_CONFIGURE_DAP_COMPULSORY
Definition: arm_adi_v5.h:793
#define DP_APSEL_INVALID
Definition: arm_adi_v5.h:110
static int dap_run(struct adiv5_dap *dap)
Perform all queued DAP operations, and clear any errors posted in the CTRL_STAT register when they ar...
Definition: arm_adi_v5.h:648
#define ARM_CS_C9_DEVTYPE_CORE_DEBUG
Definition: arm_coresight.h:88
int arm_cti_ack_events(struct arm_cti *self, uint32_t event)
Definition: arm_cti.c:81
int arm_cti_write_reg(struct arm_cti *self, unsigned int reg, uint32_t value)
Definition: arm_cti.c:123
int arm_cti_gate_channel(struct arm_cti *self, uint32_t channel)
Definition: arm_cti.c:107
int arm_cti_pulse_channel(struct arm_cti *self, uint32_t channel)
Definition: arm_cti.c:136
int arm_cti_enable(struct arm_cti *self, bool enable)
Definition: arm_cti.c:74
const char * arm_cti_name(struct arm_cti *self)
Definition: arm_cti.c:30
struct arm_cti * cti_instance_by_jim_obj(Jim_Interp *interp, Jim_Obj *o)
Definition: arm_cti.c:35
int arm_cti_ungate_channel(struct arm_cti *self, uint32_t channel)
Definition: arm_cti.c:115
#define CTI_CHNL(x)
Definition: arm_cti.h:45
#define CTI_GATE
Definition: arm_cti.h:41
#define CTI_TRIG(n)
Definition: arm_cti.h:48
#define CTI_OUTEN0
Definition: arm_cti.h:27
#define CTI_OUTEN1
Definition: arm_cti.h:28
#define DSCR_DTR_TX_FULL
Definition: arm_dpm.h:194
#define ARMV4_5_MRC(cp, op1, rd, crn, crm, op2)
Definition: arm_opcodes.h:186
#define ARMV4_5_MCR(cp, op1, rd, crn, crm, op2)
Definition: arm_opcodes.h:209
int arm_semihosting(struct target *target, int *retval)
Checks for and processes an ARM semihosting request.
int arm_semihosting_init(struct target *target)
Initialize ARM semihosting support.
enum arm_mode mode
Definition: armv4_5.c:281
int armv8_init_arch_info(struct target *target, struct armv8_common *armv8)
Definition: armv8.c:1283
int armv8_set_dbgreg_bits(struct armv8_common *armv8, unsigned int reg, unsigned long mask, unsigned long value)
Definition: armv8.c:2015
int armv8_read_mpidr(struct armv8_common *armv8)
Definition: armv8.c:881
void armv8_free_reg_cache(struct target *target)
Definition: armv8.c:1911
int armv8_arch_state(struct target *target)
Definition: armv8.c:1323
int armv8_mmu_translate_va_pa(struct target *target, target_addr_t va, target_addr_t *val, int meminfo)
Definition: armv8.c:1100
const struct command_registration armv8_command_handlers[]
Definition: armv8.c:1925
void armv8_select_reg_access(struct armv8_common *armv8, bool is_aarch64)
Definition: armv8.c:864
const char * armv8_mode_name(unsigned int psr_mode)
Map PSR mode bits to the name of an ARM processor operating mode.
Definition: armv8.c:108
int armv8_handle_cache_info_command(struct command_invocation *cmd, struct armv8_cache_common *armv8_cache)
Definition: armv8.c:1265
int armv8_identify_cache(struct armv8_common *armv8)
Definition: armv8_cache.c:298
#define CPUV8_DBG_DRCR
Definition: armv8.h:262
static struct armv8_common * target_to_armv8(struct target *target)
Definition: armv8.h:238
#define CPUV8_DBG_BVR_BASE
Definition: armv8.h:272
#define CPUV8_DBG_OSLAR
Definition: armv8.h:278
#define CPUV8_DBG_EDWAR0
Definition: armv8.h:259
@ ARMV8_RUNCONTROL_HALT
Definition: armv8.h:111
@ ARMV8_RUNCONTROL_RESUME
Definition: armv8.h:110
@ ARMV8_RUNCONTROL_STEP
Definition: armv8.h:112
#define CPUV8_DBG_MAINID0
Definition: armv8.h:249
#define CPUV8_DBG_MEMFEATURE0
Definition: armv8.h:252
#define CPUV8_DBG_DSCR
Definition: armv8.h:261
#define CPUV8_DBG_DTRTX
Definition: armv8.h:270
#define CPUV8_DBG_EDWAR1
Definition: armv8.h:260
#define CPUV8_DBG_EDESR
Definition: armv8.h:257
#define CPUV8_DBG_PRSR
Definition: armv8.h:265
#define CPUV8_DBG_DBGFEATURE0
Definition: armv8.h:251
#define CPUV8_DBG_WVR_BASE
Definition: armv8.h:274
#define CPUV8_DBG_WCR_BASE
Definition: armv8.h:275
#define CPUV8_DBG_EDECR
Definition: armv8.h:258
#define CPUV8_DBG_DTRRX
Definition: armv8.h:267
#define CPUV8_DBG_BCR_BASE
Definition: armv8.h:273
int armv8_cache_d_inner_flush_virt(struct armv8_common *armv8, target_addr_t va, size_t size)
Definition: armv8_cache.c:105
int armv8_cache_i_inner_inval_virt(struct armv8_common *armv8, target_addr_t va, size_t size)
Definition: armv8_cache.c:144
void armv8_dpm_report_dscr(struct arm_dpm *dpm, uint32_t dscr)
Definition: armv8_dpm.c:1351
int armv8_dpm_write_dirty_registers(struct arm_dpm *dpm, bool bpwp)
Writes all modified core registers for all processor modes.
Definition: armv8_dpm.c:872
enum arm_state armv8_dpm_get_core_state(struct arm_dpm *dpm)
Get core state from EDSCR, without necessity to retrieve CPSR.
Definition: armv8_dpm.c:41
int armv8_dpm_read_current_registers(struct arm_dpm *dpm)
Read basic registers of the current context: R0 to R15, and CPSR in AArch32 state or R0 to R31,...
Definition: armv8_dpm.c:734
int armv8_dpm_initialize(struct arm_dpm *dpm)
Reinitializes DPM state at the beginning of a new debug session or after a reset which may have affec...
Definition: armv8_dpm.c:1483
int armv8_dpm_modeswitch(struct arm_dpm *dpm, enum arm_mode mode)
Definition: armv8_dpm.c:538
void armv8_dpm_handle_exception(struct arm_dpm *dpm, bool do_restore)
Definition: armv8_dpm.c:1295
int armv8_dpm_setup(struct arm_dpm *dpm)
Hooks up this DPM to its associated target; call only once.
Definition: armv8_dpm.c:1401
#define PRSR_RESET
Definition: armv8_dpm.h:99
#define PRSR_SDR
Definition: armv8_dpm.h:108
#define ESR_RC
Definition: armv8_dpm.h:94
#define DSCR_MA
Definition: armv8_dpm.h:44
#define PRSR_HALT
Definition: armv8_dpm.h:101
#define DRCR_CSE
Definition: armv8_dpm.h:74
#define DSCR_HDE
Definition: armv8_dpm.h:41
#define ECR_RCE
Definition: armv8_dpm.h:91
#define PRSR_SR
Definition: armv8_dpm.h:100
#define DSCR_SYS_ERROR_PEND
Definition: armv8_dpm.h:38
#define DSCR_ERR
Definition: armv8_dpm.h:37
#define DSCR_ITE
Definition: armv8_dpm.h:47
void armv8_select_opcodes(struct armv8_common *armv8, bool state_is_aarch64)
Definition: armv8_opcodes.c:73
#define ARMV8_HLT_T1(im)
#define SYSTEM_SCTLR_EL1
Definition: armv8_opcodes.h:37
#define ARMV8_MSR_GP(system, rt)
#define SYSTEM_SCTLR_EL3
Definition: armv8_opcodes.h:39
#define ARMV8_MRS(system, rt)
#define ARMV8_HLT(im)
armv8_opcode
@ ARMV8_OPC_LDRD_IP
@ ARMV8_OPC_LDRW_IP
@ ARMV8_OPC_LDRB_IP
@ ARMV8_OPC_LDRH_IP
@ ARMV8_OPC_STRD_IP
@ ARMV8_OPC_STRH_IP
@ ARMV8_OPC_STRW_IP
@ ARMV8_OPC_STRB_IP
#define SYSTEM_SCTLR_EL2
Definition: armv8_opcodes.h:38
#define SYSTEM_DBG_DTRTX_EL0
Definition: armv8_opcodes.h:63
#define SYSTEM_DBG_DBGDTR_EL0
Definition: armv8_opcodes.h:64
#define SYSTEM_DBG_DTRRX_EL0
Definition: armv8_opcodes.h:62
#define ARMV8_HLT_A1(im)
static void buf_set_u32(uint8_t *_buffer, unsigned int first, unsigned int num, uint32_t value)
Sets num bits in _buffer, starting at the first bit, using the bits in value.
Definition: binarybuffer.h:34
static uint64_t buf_get_u64(const uint8_t *_buffer, unsigned int first, unsigned int num)
Retrieves num bits from _buffer, starting at the first bit, returning the bits in a 64-bit word.
Definition: binarybuffer.h:134
static void buf_set_u64(uint8_t *_buffer, unsigned int first, unsigned int num, uint64_t value)
Sets num bits in _buffer, starting at the first bit, using the bits in value.
Definition: binarybuffer.h:65
@ BKPT_HARD
Definition: breakpoints.h:18
@ BKPT_SOFT
Definition: breakpoints.h:19
static void watchpoint_set(struct watchpoint *watchpoint, unsigned int number)
Definition: breakpoints.h:83
static void breakpoint_hw_set(struct breakpoint *breakpoint, unsigned int hw_number)
Definition: breakpoints.h:66
@ WPT_ACCESS
Definition: breakpoints.h:23
@ WPT_READ
Definition: breakpoints.h:23
@ WPT_WRITE
Definition: breakpoints.h:23
void command_print(struct command_invocation *cmd, const char *format,...)
Definition: command.c:443
#define CMD
Use this macro to access the command being handled, rather than accessing the variable directly.
Definition: command.h:141
#define CMD_NAME
Use this macro to access the name of the command being handled, rather than accessing the variable di...
Definition: command.h:166
#define CMD_ARGV
Use this macro to access the arguments for the command being handled, rather than accessing the varia...
Definition: command.h:156
#define COMMAND_PARSE_ADDRESS(in, out)
Definition: command.h:452
#define ERROR_COMMAND_SYNTAX_ERROR
Definition: command.h:402
#define CMD_ARGC
Use this macro to access the number of arguments for the command being handled, rather than accessing...
Definition: command.h:151
#define COMMAND_PARSE_NUMBER(type, in, out)
parses the string in into out as a type, or prints a command error and passes the error code to the c...
Definition: command.h:442
#define CMD_CTX
Use this macro to access the context of the command being handled, rather than accessing the variable...
Definition: command.h:146
#define COMMAND_REGISTRATION_DONE
Use this as the last entry in an array of command_registration records.
Definition: command.h:253
#define ERROR_COMMAND_ARGUMENT_INVALID
Definition: command.h:404
@ COMMAND_ANY
Definition: command.h:42
@ COMMAND_EXEC
Definition: command.h:40
static int halted(struct target *target, const char *label)
Definition: davinci.c:58
uint64_t buffer
Pointer to data buffer to send over SPI.
Definition: dw-spi-helper.h:0
uint32_t size
Size of dw_spi_transaction::buffer.
Definition: dw-spi-helper.h:4
uint32_t address
Starting address. Sector aligned.
Definition: dw-spi-helper.h:0
int mask
Definition: esirisc.c:1740
uint8_t type
Definition: esp_usb_jtag.c:0
static struct esp_usb_jtag * priv
Definition: esp_usb_jtag.c:219
uint8_t length
Definition: esp_usb_jtag.c:1
int jim_nvp_name2value_obj(Jim_Interp *interp, const struct jim_nvp *p, Jim_Obj *o, struct jim_nvp **result)
Definition: jim-nvp.c:66
int jim_getopt_obj(struct jim_getopt_info *goi, Jim_Obj **puthere)
Remove argv[0] from the list.
Definition: jim-nvp.c:169
int adapter_deassert_reset(void)
Definition: jtag/core.c:1912
enum reset_types jtag_get_reset_config(void)
Definition: jtag/core.c:1747
int adapter_assert_reset(void)
Definition: jtag/core.c:1892
reset_types
Definition: jtag.h:215
@ RESET_SRST_NO_GATING
Definition: jtag.h:224
@ RESET_HAS_SRST
Definition: jtag.h:218
@ RESET_SRST_PULLS_TRST
Definition: jtag.h:220
#define LOG_TARGET_INFO(target, fmt_str,...)
Definition: log.h:153
#define LOG_WARNING(expr ...)
Definition: log.h:130
#define ERROR_FAIL
Definition: log.h:174
#define LOG_TARGET_ERROR(target, fmt_str,...)
Definition: log.h:162
#define LOG_ERROR(expr ...)
Definition: log.h:133
#define LOG_INFO(expr ...)
Definition: log.h:127
#define LOG_DEBUG(expr ...)
Definition: log.h:110
#define ERROR_OK
Definition: log.h:168
const struct nvp * nvp_name2value(const struct nvp *p, const char *name)
Definition: nvp.c:29
const struct nvp * nvp_value2name(const struct nvp *p, int value)
Definition: nvp.c:39
void register_cache_invalidate(struct reg_cache *cache)
Marks the contents of the register cache as invalid (and clean).
Definition: register.c:94
target_addr_t addr
Start address to search for the control block.
Definition: rtt/rtt.c:28
struct target * target
Definition: rtt/rtt.c:26
const struct command_registration semihosting_common_handlers[]
const struct command_registration smp_command_handlers[]
Definition: smp.c:153
#define foreach_smp_target(pos, head)
Definition: smp.h:15
uint8_t brpn
Definition: aarch64.h:37
target_addr_t value
Definition: aarch64.h:35
int type
Definition: aarch64.h:34
uint32_t control
Definition: aarch64.h:36
int used
Definition: aarch64.h:33
unsigned int common_magic
Definition: aarch64.h:41
int wp_num_available
Definition: aarch64.h:57
struct aarch64_brp * wp_list
Definition: aarch64.h:58
int brp_num_available
Definition: aarch64.h:52
uint64_t system_control_reg_curr
Definition: aarch64.h:47
struct armv8_common armv8_common
Definition: aarch64.h:43
struct aarch64_brp * brp_list
Definition: aarch64.h:53
enum aarch64_isrmasking_mode isrmasking_mode
Definition: aarch64.h:60
uint64_t system_control_reg
Definition: aarch64.h:46
int brp_num_context
Definition: aarch64.h:50
struct arm_cti * cti
Definition: aarch64.c:39
struct adiv5_private_config adiv5_config
Definition: aarch64.c:38
struct adiv5_dap * dap
DAP this AP belongs to.
Definition: arm_adi_v5.h:254
uint32_t memaccess_tck
Configures how many extra tck clocks are added after starting a MEM-AP access before we try to read i...
Definition: arm_adi_v5.h:306
This represents an ARM Debug Interface (v5) Debug Access Port (DAP).
Definition: arm_adi_v5.h:348
struct adiv5_dap * dap
Definition: arm_adi_v5.h:787
This wraps an implementation of DPM primitives.
Definition: arm_dpm.h:47
target_addr_t wp_addr
Target dependent watchpoint address.
Definition: arm_dpm.h:147
uint64_t didr
Cache of DIDR.
Definition: arm_dpm.h:51
int(* instr_write_data_r0_64)(struct arm_dpm *dpm, uint32_t opcode, uint64_t data)
Runs one instruction, writing data to R0 before execution.
Definition: arm_dpm.h:82
int(* instr_execute)(struct arm_dpm *dpm, uint32_t opcode)
Runs one instruction.
Definition: arm_dpm.h:60
int(* instr_write_data_dcc_64)(struct arm_dpm *dpm, uint32_t opcode, uint64_t data)
Definition: arm_dpm.h:68
struct arm * arm
Definition: arm_dpm.h:48
struct dpm_bp * dbp
Definition: arm_dpm.h:139
int(* instr_write_data_dcc)(struct arm_dpm *dpm, uint32_t opcode, uint32_t data)
Runs one instruction, writing data to DCC before execution.
Definition: arm_dpm.h:65
int(* instr_read_data_r0_64)(struct arm_dpm *dpm, uint32_t opcode, uint64_t *data)
Definition: arm_dpm.h:108
struct dpm_wp * dwp
Definition: arm_dpm.h:140
int(* instr_cpsr_sync)(struct arm_dpm *dpm)
Optional core-specific operation invoked after CPSR writes.
Definition: arm_dpm.h:86
uint32_t dscr
Recent value of DSCR.
Definition: arm_dpm.h:150
Represents a generic ARM core, with standard application registers.
Definition: arm.h:175
int(* mrc)(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t crn, uint32_t crm, uint32_t *value)
Read coprocessor register.
Definition: arm.h:230
enum arm_mode core_mode
Record the current core mode: SVC, USR, or some other mode.
Definition: arm.h:196
struct adiv5_dap * dap
For targets conforming to ARM Debug Interface v5, this handle references the Debug Access Port (DAP) ...
Definition: arm.h:257
struct reg * pc
Handle to the PC; valid in all core modes.
Definition: arm.h:181
struct reg_cache * core_cache
Definition: arm.h:178
struct arm_dpm * dpm
Handle for the debug module, if one is present.
Definition: arm.h:213
int(* mcr)(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t crn, uint32_t crm, uint32_t value)
Write coprocessor register.
Definition: arm.h:241
enum arm_state core_state
Record the current core state: ARM, Thumb, or otherwise.
Definition: arm.h:199
int d_u_cache_enabled
Definition: armv8.h:160
int(* flush_all_data_cache)(struct target *target)
Definition: armv8.h:164
int i_cache_enabled
Definition: armv8.h:159
struct arm arm
Definition: armv8.h:187
struct arm_dpm dpm
Definition: armv8.h:191
bool is_armv8r
Definition: armv8.h:207
target_addr_t debug_base
Definition: armv8.h:192
bool sticky_reset
Definition: armv8.h:216
enum run_control_op last_run_control_op
Definition: armv8.h:219
struct armv8_mmu_common armv8_mmu
Definition: armv8.h:209
struct adiv5_ap * debug_ap
Definition: armv8.h:193
struct arm_cti * cti
Definition: armv8.h:211
void(* pre_restore_context)(struct target *target)
Definition: armv8.h:234
int(* examine_debug_reason)(struct target *target)
Definition: armv8.h:231
int(* post_debug_entry)(struct target *target)
Definition: armv8.h:232
uint32_t mmu_enabled
Definition: armv8.h:181
int(* read_physical_memory)(struct target *target, target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
Definition: armv8.h:178
struct armv8_cache_common armv8_cache
Definition: armv8.h:180
int linked_brp
Definition: breakpoints.h:36
unsigned int length
Definition: breakpoints.h:29
uint8_t * orig_instr
Definition: breakpoints.h:33
enum breakpoint_type type
Definition: breakpoints.h:30
bool is_set
Definition: breakpoints.h:31
unsigned int number
Definition: breakpoints.h:32
uint32_t asid
Definition: breakpoints.h:28
target_addr_t address
Definition: breakpoints.h:27
const char * name
Definition: command.h:235
const struct command_registration * chain
If non-NULL, the commands in chain will be registered in the same context and scope of this registrat...
Definition: command.h:249
struct target * target
Definition: target.h:95
A TCL -ish GetOpt like code.
Definition: jim-nvp.h:136
Jim_Interp * interp
Definition: jim-nvp.h:137
bool is_configure
Definition: jim-nvp.h:140
Jim_Obj *const * argv
Definition: jim-nvp.h:139
Name Value Pairs, aka: NVP.
Definition: jim-nvp.h:60
const char * name
Definition: jim-nvp.h:61
int value
Definition: jim-nvp.h:62
Name Value Pairs, aka: NVP.
Definition: nvp.h:61
int value
Definition: nvp.h:63
const char * name
Definition: nvp.h:62
struct reg_cache * next
Definition: register.h:146
bool valid
Definition: register.h:126
uint8_t * value
Definition: register.h:122
bool dirty
Definition: register.h:124
struct target * target
Definition: target.h:214
This holds methods shared between all instances of a given target type.
Definition: target_type.h:26
const char * name
Name of this type of target.
Definition: target_type.h:31
Definition: target.h:116
int32_t coreid
Definition: target.h:120
struct gdb_service * gdb_service
Definition: target.h:199
bool dbgbase_set
Definition: target.h:174
bool dbg_msg_enabled
Definition: target.h:163
enum target_debug_reason debug_reason
Definition: target.h:154
enum target_state state
Definition: target.h:157
uint32_t dbgbase
Definition: target.h:175
void * private_config
Definition: target.h:165
struct list_head * smp_targets
Definition: target.h:188
unsigned int smp
Definition: target.h:187
struct watchpoint * watchpoints
Definition: target.h:160
bool reset_halt
Definition: target.h:144
struct target * next
Definition: target.h:166
enum watchpoint_rw rw
Definition: breakpoints.h:46
bool is_set
Definition: breakpoints.h:47
struct watchpoint * next
Definition: breakpoints.h:49
unsigned int length
Definition: breakpoints.h:43
unsigned int number
Definition: breakpoints.h:48
target_addr_t address
Definition: breakpoints.h:42
uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
Definition: target.c:307
int target_call_event_callbacks(struct target *target, enum target_event event)
Definition: target.c:1765
void target_free_all_working_areas(struct target *target)
Definition: target.c:2151
void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
Definition: target.c:370
void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
Definition: target.c:352
int target_write_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
Write count items of size bytes to the memory of target at the address given.
Definition: target.c:1266
static int srst_asserted
Definition: target.c:2850
int target_register_timer_callback(int(*callback)(void *priv), unsigned int time_ms, enum target_timer_type type, void *priv)
The period is very approximate, the callback can happen much more often or much more rarely than spec...
Definition: target.c:1659
void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
Definition: target.c:343
uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
Definition: target.c:334
int target_read_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
Read count items of size bytes from the memory of target at the address given.
Definition: target.c:1238
bool target_has_event_action(const struct target *target, enum target_event event)
Returns true only if the target has a handler for the specified event.
Definition: target.c:4867
struct target * get_current_target(struct command_context *cmd_ctx)
Definition: target.c:458
void target_handle_event(struct target *target, enum target_event e)
Definition: target.c:4674
uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
Definition: target.c:316
target_debug_reason
Definition: target.h:68
@ DBG_REASON_NOTHALTED
Definition: target.h:74
@ DBG_REASON_DBGRQ
Definition: target.h:69
@ DBG_REASON_WATCHPOINT
Definition: target.h:71
#define ERROR_TARGET_NOT_HALTED
Definition: target.h:790
static bool target_was_examined(const struct target *target)
Definition: target.h:436
@ TARGET_TIMER_TYPE_PERIODIC
Definition: target.h:327
@ TARGET_EVENT_DEBUG_RESUMED
Definition: target.h:272
@ TARGET_EVENT_HALTED
Definition: target.h:252
@ TARGET_EVENT_RESUMED
Definition: target.h:253
@ TARGET_EVENT_DEBUG_HALTED
Definition: target.h:271
@ TARGET_EVENT_RESET_ASSERT
Definition: target.h:264
static const char * target_name(const struct target *target)
Returns the instance-specific name of the specified target.
Definition: target.h:233
target_state
Definition: target.h:53
@ TARGET_RESET
Definition: target.h:57
@ TARGET_DEBUG_RUNNING
Definition: target.h:58
@ TARGET_UNKNOWN
Definition: target.h:54
@ TARGET_HALTED
Definition: target.h:56
@ TARGET_RUNNING
Definition: target.h:55
#define ERROR_TARGET_NOT_EXAMINED
Definition: target.h:797
#define ERROR_TARGET_TIMEOUT
Definition: target.h:789
#define ERROR_TARGET_RESOURCE_NOT_AVAILABLE
Definition: target.h:794
static void target_set_examined(struct target *target)
Sets the examined flag for the given target.
Definition: target.h:443
int target_request(struct target *target, uint32_t request)
int64_t timeval_ms(void)
#define TARGET_ADDR_FMT
Definition: types.h:342
uint64_t target_addr_t
Definition: types.h:335
#define TARGET_PRIxADDR
Definition: types.h:340
#define NULL
Definition: usb.h:16
uint8_t offset[4]
Definition: vdebug.c:9
uint8_t dummy[96]
Definition: vdebug.c:23
uint8_t count[4]
Definition: vdebug.c:22